Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Artif Intell ; 6: 1191122, 2023.
Article in English | MEDLINE | ID: mdl-37601035

ABSTRACT

While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.

2.
Nature ; 615(7953): 652-659, 2023 03.
Article in English | MEDLINE | ID: mdl-36890232

ABSTRACT

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Subject(s)
Crops, Agricultural , Diploidy , Genetic Variation , Genome, Plant , Genomics , Plant Breeding , Plant Proteins , Vicia faba , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , DNA Copy Number Variations/genetics , DNA, Satellite/genetics , Gene Amplification/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Geography , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Recombination, Genetic , Retroelements/genetics , Seeds/anatomy & histology , Seeds/genetics , Vicia faba/anatomy & histology , Vicia faba/genetics , Vicia faba/metabolism
3.
Front Plant Sci ; 13: 970865, 2022.
Article in English | MEDLINE | ID: mdl-36340396

ABSTRACT

Frost is a major abiotic stress of winter type faba beans (Vica faba L.) and has adverse effects on crop yield. Climate change, far from reducing the incidence of frost events, is making these phenomena more and more common, severe, and prolonged. Despite the important interaction that the environment has in the tolerance of faba bean to frost, this trait seems to have good levels of heritability. Several QTLs for frost tolerance have already been reported, however, a more robust identification is needed to more precisely identify the genomic regions involved in faba bean tolerance to sub-zero temperatures. Several pea (Pisum sativum L.) and barrel medic (Medicago truncatula L.) frost tolerance QTLs appear to be conserved between these two species, furthering the hypothesis that the genetic control of frost tolerance in legume species might be more generally conserved. In this work, the QTL mapping in two faba bean recombinant inbred line (RIL) populations connected by a common winter-type parent has led to the identification of five genomic regions involved in the control of frost tolerance on linkage groups I, III, IV, and V. Among them, a major and robust QTL of great interest for marker-assisted selection was identified on the lower part of the long-arm of LGI. The synteny between the faba bean frost tolerance QTLs and those previously identified in other legume species such as barrel medic, pea or soybean highlighted at least partial conservation of the genetic control of frost tolerance among different faba bean genetic pools and legume species. Four novel RILs showing high and stable levels of tolerance and the ability to recover from freezing temperatures by accumulating frost tolerance QTLs are now available for breeding programs.

4.
Front Plant Sci ; 9: 1914, 2018.
Article in English | MEDLINE | ID: mdl-30687341

ABSTRACT

Seed weevils (Bruchus spp.) are major pests of faba bean, causing yield losses, and affecting marketability. Our objective was to identify stable sources of resistance to seed weevil attacks, determine the climatic factors that most influenced its incidence and its relationship with some phenological and agronomic traits. The accessions "BOBICK ROD115," "CÔTE D'OR," "221516," and "NOVA GRADISKA" showed increased resistance to penetration and development of larvae. Other accessions such as "QUASAR," "109.669," and "223303" exhibited resistance to larval development. The results of this work suggest the presence of different defense mechanisms to seed weevils in faba bean, which in the future could be introgressed in elite cultivars to create resistant varieties and contribute to more sustainable agriculture with less need for pesticides. The temperature, rainfall, and humidity seemed to be the climatic factors most influencing faba bean seed weevil attack while the precocity and the small weight of the seeds were correlated with lower infestation rates in the different experiments.

5.
BMC Genomics ; 17: 124, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26897486

ABSTRACT

BACKGROUND: Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS: A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS: GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION: This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.


Subject(s)
Aphanomyces , Chromosome Mapping , Disease Resistance/genetics , Pisum sativum/genetics , Plant Diseases/genetics , Alleles , Confidence Intervals , Genetic Association Studies , Genetic Markers , Genotype , Haplotypes , Linkage Disequilibrium , Models, Genetic , Pisum sativum/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
6.
Front Plant Sci ; 6: 941, 2015.
Article in English | MEDLINE | ID: mdl-26635819

ABSTRACT

Pea is an important food and feed crop and a valuable component of low-input farming systems. Improving resistance to biotic and abiotic stresses is a major breeding target to enhance yield potential and regularity. Genomic selection (GS) has lately emerged as a promising technique to increase the accuracy and gain of marker-based selection. It uses genome-wide molecular marker data to predict the breeding values of candidate lines to selection. A collection of 339 genetic resource accessions (CRB339) was subjected to high-density genotyping using the GenoPea 13.2K SNP Array. Genomic prediction accuracy was evaluated for thousand seed weight (TSW), the number of seeds per plant (NSeed), and the date of flowering (BegFlo). Mean cross-environment prediction accuracies reached 0.83 for TSW, 0.68 for NSeed, and 0.65 for BegFlo. For each trait, the statistical method, the marker density, and/or the training population size and composition used for prediction were varied to investigate their effects on prediction accuracy: the effect was large for the size and composition of the training population but limited for the statistical method and marker density. Maximizing the relatedness between individuals in the training and test sets, through the CDmean-based method, significantly improved prediction accuracies. A cross-population cross-validation experiment was further conducted using the CRB339 collection as a training population set and nine recombinant inbred lines populations as test set. Prediction quality was high with mean Q (2) of 0.44 for TSW and 0.59 for BegFlo. Results are discussed in the light of current efforts to develop GS strategies in pea.

7.
Front Plant Sci ; 6: 1037, 2015.
Article in English | MEDLINE | ID: mdl-26640470

ABSTRACT

Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome.

8.
Plant J ; 84(6): 1257-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26590015

ABSTRACT

Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.


Subject(s)
Chromosomes, Plant/genetics , Pisum sativum/genetics , Chromosome Mapping , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Transcriptome
9.
BMC Genomics ; 14: 814, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24261852

ABSTRACT

BACKGROUND: Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped to M. truncatula chromosome 6 (Mt-FTQTL6) using the LR3 population derived from a cross between the freezing-tolerant accession F83005-5 and the freezing-sensitive accession DZA045-5. RESULTS: The confidence interval of Mt-FTQTL6 was narrowed down to the region comprised between markers MTIC153 and NT6054 using recombinant F7 and F8 lines. A bacterial-artificial chromosome (BAC) clone contig map was constructed in an attempt to close the residual assembly gap existing therein. Twenty positional candidate genes including twelve C-repeat binding factor (CBF)/dehydration-responsive element binding factor 1 (DREB1) genes were identified from BAC-derived sequences and whole-genome shotgun sequences (WGS). CBF/DREB1 genes are organized in a tandem array within an approximately 296-Kb region. Eleven CBF/DREB1 genes were isolated and sequenced from F83005-5 and DZA045-5 which revealed high polymorphism among these accessions. Unique features characterizing CBF/DREB1 genes from M. truncatula, such as alternative splicing and large tandem duplication, are elucidated for the first time. CONCLUSIONS: Overall, twenty genes were identified as potential candidates to explain Mt-FTQTL6 effect. Their future functional characterization will uncover the gene(s) involved in freezing tolerance difference observed between F83005-5 and DZA045-5. Knowledge transfer for breeding improvement of crop legumes is expected. Furthermore, CBF/DREB1 related data will certainly have a large impact on research studies targeting this group of transcriptional activators in M. truncatula and other legume species.


Subject(s)
Arabidopsis Proteins/genetics , Freezing , Medicago truncatula/genetics , Transcription Factors/genetics , Acclimatization/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Base Sequence , Chromosomes, Plant/genetics , Dehydration , Gene Expression Regulation, Plant , Medicago truncatula/growth & development , Phenotype , Quantitative Trait Loci/genetics , Transcription Factors/physiology
10.
J Pharm Biomed Anal ; 50(2): 107-16, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19473803

ABSTRACT

Static quenching and time-resolved emission spectra of tryptophan residues of BSA (2 Trp residues) and HSA (1 Trp residue) were performed in the presence of high concentrations of calcofluor white, a fluorophore that is specific to both carbohydrate residues and to hydrophobic sites in proteins. In the absence of calcofluor white, BSA and HSA emit with a maximum at 340 and 330 nm, respectively. Also, tryptophan residues in both proteins fluoresce with three identical lifetimes. Time-resolved spectra of HSA show that the three lifetimes emit at a maximum equal to 330 nm while spectra obtained from BSA show different peak positions for the three lifetimes. At high calcofluor concentrations, steady-state fluorescence emission spectrum of BSA displays a maximum at 330 nm instead of 340 nm in the absence of calcofluor. Fluorescence excitation spectra of the protein recorded in the absence and presence of calcofluor indicate the absence of protein conformational modification upon calcofluor white binding. Time-resolved emission spectra of the three lifetimes show identical peaks equal to 330 nm. Steady-state and time-resolved emission spectra performed on HSA in the presence of calcofluor do not show any modification in the emission peak (330 nm) indicating the absence of any conformational change and confirming the fact that the shift observed for tryptophan residues emission in BSA is the result of fluorescence quenching of Trp-134 residue.


Subject(s)
Serum Albumin/chemistry , Spectrometry, Fluorescence/methods , Tryptophan/chemistry , Animals , Cattle , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...