Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4528, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.


Subject(s)
Fatty Liver , Interleukin-22 , Interleukins , Liver , Pancreas , Interleukins/metabolism , Animals , Liver/metabolism , Liver/pathology , Liver/drug effects , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Humans , Mice , Fatty Liver/drug therapy , Fatty Liver/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Insulin Resistance , Receptors, Interleukin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...