Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(2): 130504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37967728

ABSTRACT

The transgenic expression of rice triketone dioxygenase (TDO; also known as HIS1) can provide protection from triketone herbicides to susceptible dicot crops such as soybean. Triketones are phytotoxic inhibitors of plant hydroxyphenylpyruvate dioxygenases (HPPD). The TDO gene codes for an iron/2-oxoglutarate-dependent oxidoreductase. We obtained an X-ray crystal structure of TDO using SeMet-SAD phasing to 3.16 Å resolution. The structure reveals that TDO possesses a fold like that of Arabidopsis thaliana 2-oxoglutarate­iron-dependent oxygenase anthocyanidin synthase (ANS). Unlike ANS, this TDO structure lacks bound metals or cofactors, and we propose this is because the disordered flexible loop over the active site is sterically constrained from folding properly in the crystal lattice. A combination of mass spectrometry, nuclear magnetic resonance, and enzyme activity studies indicate that rice TDO oxidizes mesotrione in a series of steps; first producing 5-hydroxy-mesotrione and then oxy-mesotrione. Evidence suggests that 5-hydroxy-mesotrione is a much weaker inhibitor of HPPD than mesotrione, and oxy-mesotrione has virtually no inhibitory activity. Of the close homologues which have been tested, only corn and rice TDO have enzymatic activity and the ability to protect plants from mesotrione. Correlating sequence and structure has identified four amino acids necessary for TDO activity. Introducing these four amino acids imparts activity to a mesotrione-inactive TDO-like protein from sorghum, which may expand triketone herbicide resistance in new crop species.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Dioxygenases , Oryza , Oryza/genetics , Oryza/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Ketoglutaric Acids , Arabidopsis/metabolism , Amino Acids , Iron
2.
PLoS Pathog ; 9(8): e1003505, 2013.
Article in English | MEDLINE | ID: mdl-23935495

ABSTRACT

Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A "chokepoint reaction" is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy.


Subject(s)
Anthelmintics/therapeutic use , Databases, Protein , Drug Discovery , Helminth Proteins , Nematoda/metabolism , Nematode Infections , Animals , Drosophila melanogaster , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans , Nematode Infections/drug therapy , Nematode Infections/genetics , Nematode Infections/metabolism , Oxygen Consumption/drug effects
3.
PLoS Pathog ; 9(2): e1003149, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23459584

ABSTRACT

As one of the largest protein families, protein kinases (PKs) regulate nearly all processes within the cell and are considered important drug targets. Much research has been conducted on inhibitors for PKs, leading to a wealth of compounds that target PKs that have potential to be lead anthelmintic drugs. Identifying compounds that have already been developed to treat neglected tropical diseases is an attractive way to obtain lead compounds inexpensively that can be developed into much needed drugs, especially for use in developing countries. In this study, PKs from nematodes, hosts, and DrugBank were identified and classified into kinase families and subfamilies. Nematode proteins were placed into orthologous groups that span the phylum Nematoda. A minimal kinome for the phylum Nematoda was identified, and properties of the minimal kinome were explored. Orthologous groups from the minimal kinome were prioritized for experimental testing based on RNAi phenotype of the Caenorhabditis elegans ortholog, transcript expression over the life-cycle and anatomic expression patterns. Compounds linked to targets in DrugBank belonging to the same kinase families and subfamilies in the minimal nematode kinome were extracted. Thirty-five compounds were tested in the non-parasitic C. elegans and active compounds progressed to testing against nematode species with different modes of parasitism, the blood-feeding Haemonchus contortus and the filarial Brugia malayi. Eighteen compounds showed efficacy in C. elegans, and six compounds also showed efficacy in at least one of the parasitic species. Hypotheses regarding the pathway the compounds may target and their molecular mechanism for activity are discussed.


Subject(s)
Anthelmintics/pharmacology , Brugia malayi/drug effects , Caenorhabditis elegans/drug effects , Haemonchus/drug effects , Protein Kinases/chemistry , Animals , Brugia malayi/genetics , Caenorhabditis elegans/genetics , Haemonchus/genetics , Molecular Structure , Protein Kinases/genetics , RNA Interference
4.
Nucleic Acids Res ; 40(Database issue): D720-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22139919

ABSTRACT

Nematode.net (http://nematode.net) has been a publicly available resource for studying nematodes for over a decade. In the past 3 years, we reorganized Nematode.net to provide more user-friendly navigation through the site, a necessity due to the explosion of data from next-generation sequencing platforms. Organism-centric portals containing dynamically generated data are available for over 56 different nematode species. Next-generation data has been added to the various data-mining portals hosted, including NemaBLAST and NemaBrowse. The NemaPath metabolic pathway viewer builds associations using KOs, rather than ECs to provide more accurate and fine-grained descriptions of proteins. Two new features for data analysis and comparative genomics have been added to the site. NemaSNP enables the user to perform population genetics studies in various nematode populations using next-generation sequencing data. HelmCoP (Helminth Control and Prevention) as an independent component of Nematode.net provides an integrated resource for storage, annotation and comparative genomics of helminth genomes to aid in learning more about nematode genomes, as well as drug, pesticide, vaccine and drug target discovery. With this update, Nematode.net will continue to realize its original goal to disseminate diverse bioinformatic data sets and provide analysis tools to the broad scientific community in a useful and user-friendly manner.


Subject(s)
Databases, Genetic , High-Throughput Nucleotide Sequencing , Nematoda/genetics , Animals , Data Mining , Genome, Helminth , Genomics , Metabolic Networks and Pathways , Nematoda/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Software
6.
PLoS One ; 6(7): e21832, 2011.
Article in English | MEDLINE | ID: mdl-21760913

ABSTRACT

A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.


Subject(s)
Anthelmintics/pharmacology , Genomics , Helminthiasis/prevention & control , Helminths/drug effects , Helminths/genetics , Internet , Software , Amino Acid Sequence , Animals , Helminthiasis/immunology , Helminthiasis/parasitology , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Species Specificity , Tetrahydrofolate Dehydrogenase/chemistry , User-Computer Interface , Vaccines
7.
PLoS One ; 6(4): e18381, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21556146

ABSTRACT

Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable.


Subject(s)
Helminth Proteins/metabolism , Helminthiasis/prevention & control , Helminths/pathogenicity , Amino Acid Sequence , Animals , Databases, Protein , Helminth Proteins/chemistry , Humans , Markov Chains , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Sequence Homology, Amino Acid , Species Specificity
8.
Nat Genet ; 43(3): 228-35, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21336279

ABSTRACT

Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map-assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.


Subject(s)
Genome, Helminth , Trichinella spiralis/genetics , Animals , Base Sequence , Conserved Sequence , Evolution, Molecular , Molecular Sequence Data , Nematoda/genetics , Phylogeny , Sequence Analysis, DNA/methods
9.
Chem Biol Drug Des ; 75(3): 325-32, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20659113

ABSTRACT

G-protein coupled receptors play an essential role in many biological processes. Despite an increase in the number of solved X-ray crystal structures of G-protein coupled receptors, capturing a G-protein coupled receptor in its activated state for structural analysis has proven to be difficult. An unexplored paradigm is stabilization of one or more conformational states of a G-protein coupled receptor via binding a small molecule to the intracellular loops. A short tetrazole peptidomimetic based on the photoactivated state of rhodopsin-bound structure of Gt(alpha)(340-350) was previously designed and shown to stabilize the photoactivated state of rhodopsin, the G-protein coupled receptor involved in vision. A pharmacophore model derived from the designed tetrazole tetrapeptide was used for ligand-based virtual screening to enhance the possible discovery of novel scaffolds. Maybridge Hitfinder and National Cancer Institute diversity libraries were screened for compounds containing the pharmacophore. Forty-seven compounds resulted from virtually screening the Maybridge library, whereas no hits resulted with the National Cancer Institute library. Three of the 47 Maybridge compounds were found to stabilize the MII state. As these compounds did not inhibit binding of transducin to photoactivated state of rhodopsin, they were assumed to be allosteric ligands. These compounds are potentially useful for crystallographic studies where complexes with these compounds might capture rhodopsin in its activated conformational state.


Subject(s)
Ligands , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation , Azoles/chemistry , Azoles/pharmacology , Protein Binding , Protein Stability , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
10.
Proteins ; 78(2): 271-85, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19731375

ABSTRACT

This study presents the results of a de novo approach modeling possible conformational dynamics of the extracellular (EC) loops in G-protein-coupled receptors (GPCRs), specifically in bovine rhodopsin (bRh), squid rhodopsin (sRh), human beta-2 adrenergic receptor (beta2AR), turkey beta-1 adrenergic receptor (beta1AR), and human A2 adenosine receptor (A2AR). The approach deliberately sacrificed a detailed description of any particular 3D structure of the loops in GPCRs in favor of a less precise description of many possible structures. Despite this, the approach found ensembles of the low-energy conformers of the EC loops that contained structures close to the available X-ray snapshots. For the smaller EC1 and EC3 loops (6-11 residues), our results were comparable with the best recent results obtained by other authors using much more sophisticated techniques. For the larger EC2 loops (25-34 residues), our results consistently yielded structures significantly closer to the X-ray snapshots than the results of the other authors for loops of similar size. The results suggested possible large-scale movements of the EC loops in GPCRs that might determine their conformational dynamics. The approach was also validated by accurately reproducing the docking poses for low-molecular-weight ligands in beta2AR, beta1AR, and A2AR, demonstrating the possible influence of the conformations of the EC loops on the binding sites of ligands. The approach correctly predicted the system of disulfide bridges between the EC loops in A2AR and elucidated the probable pathways for forming this system.


Subject(s)
Receptors, Adenosine A2/chemistry , Receptors, Adrenergic, beta-1/chemistry , Receptors, Adrenergic, beta-2/chemistry , Rhodopsin/chemistry , Amino Acid Sequence , Animals , Cattle , Crystallography, X-Ray , Decapodiformes , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Receptors, Adenosine A2/metabolism , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Rhodopsin/metabolism , Turkey
11.
J Med Chem ; 51(17): 5297-303, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707087

ABSTRACT

Modulation of interactions between activated GPCRs (G-protein coupled receptors) and the intracellular (IC) signal transducers, heterotrimeric G-proteins, is an attractive, yet essentially unexplored, paradigm for treatment of certain diseases. Regulating downstream signaling for treatment of congenital diseases due to constitutively active GPCRs, as well as tumors where GPCRs are often overexpressed, requires the development of new methodologies. Modeling, experimental data, docking, scoring, and experimental testing (MEDSET) was developed to discover inhibitors that target the IC loops of activated GPCRs. As proof-of-concept, MEDSET developed and utilized a model of the interface between photoactivated rhodopsin (R*) and transducin (Gt), its G-protein. A National Cancer Institute (NCI) compound library was screened to identify compounds that bound at the interface between R* and its G-protein. High-scoring compounds from this virtual screen were obtained and tested experimentally for their ability to stabilize R* and prevent Gt from binding to R*. Several compounds that modulate signal transduction have been identified.


Subject(s)
Drug Design , Drug Evaluation, Preclinical/methods , Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Computer Simulation , Heterotrimeric GTP-Binding Proteins/drug effects , Humans , Rhodopsin , Transducin
12.
Biochemistry ; 46(16): 4734-44, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17397191

ABSTRACT

Obtaining a reliable 3D model for the complex formed by photoactivated rhodopsin (R*) and its G-protein, transducin (Gtalphabetagamma), would significantly benefit the entire field of structural biology of G-protein-coupled receptors (GPCRs). In this study, we have performed extensive configurational sampling for the isolated C-terminal fragment of the alpha-subunit of transducin, Gtalpha 340-350, within cavities of photoactivated rhodopsin formed by different energetically feasible conformations of the intracellular loops. Our results suggested a new 3D model of the rhodopsin-transducin complex that fully satisfied all available experimental data on site-directed mutagenesis of rhodopsin and Gtalphabetagamma as well as data from disulfide-linking experiments. Importantly, the experimental data were not used as a priori constraints in model building. We performed a thorough comparison of existing computational models of the rhodopsin-transducin complex with each other and with current experimental data. It was found that different models suggest interactions with different molecules in the rhodopsin oligomer, that providing valuable guidance in design of specific novel experimental studies of the R*-Gtalphabetagamma complex. Finally, we demonstrated that the isolated Gtalpha 340-350 fragment does not necessarily bind rhodopsin in the same binding mode as the same segment in intact Gtalpha.


Subject(s)
Rhodopsin/chemistry , Transducin/chemistry , Amino Acid Sequence , Models, Molecular , Protein Conformation , Rhodopsin/radiation effects
13.
Biophys J ; 92(12): 4325-34, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17351008

ABSTRACT

A novel combination of experimental data and extensive computational modeling was used to explore probable protein-protein interactions between photoactivated rhodopsin (R*) and experimentally determined R*-bound structures of the C-terminal fragment of alpha-transducin (Gt(alpha)(340-350)) and its analogs. Rather than using one set of loop structures derived from the dark-adapted rhodopsin state, R* was modeled in this study using various energetically feasible sets of intracellular loop (IC loop) conformations proposed previously in another study. The R*-bound conformation of Gt(alpha)(340-350) and several analogs were modeled using experimental transferred nuclear Overhauser effect data derived upon binding R*. Gt(alpha)(340-350) and its analogs were docked to various conformations of the intracellular loops, followed by optimization of side-chain spatial positions in both R* and Gt(alpha)(340-350) to obtain low-energy complexes. Finally, the structures of each complex were subjected to energy minimization using the OPLS/GBSA force field. The resulting residue-residue contacts at the interface between R* and Gt(alpha)(340-350) were validated by comparison with available experimental data, primarily from mutational studies. Computational modeling performed for Gt(alpha)(340-350) and its analogs when bound to R* revealed a consensus of general residue-residue interactions, necessary for efficient complex formation between R* and its Gt(alpha) recognition motif.


Subject(s)
Models, Chemical , Models, Molecular , Photochemistry/methods , Rhodopsin/chemistry , Rhodopsin/ultrastructure , Transducin/chemistry , Transducin/ultrastructure , Binding Sites , Computer Simulation , Light , Protein Binding , Protein Conformation , Rhodopsin/radiation effects
14.
Biochemistry ; 44(49): 16246-56, 2005 Dec 13.
Article in English | MEDLINE | ID: mdl-16331985

ABSTRACT

The Bcr oligomerization domain, from the Bcr-Abl oncoprotein, is an attractive therapeutic target for treating leukemias because it is required for cellular transformation. The domain homodimerizes via an antiparallel coiled coil with an adjacent short, helical swap domain. Inspection of the coiled-coil sequence does not reveal obvious determinants of helix-orientation specificity, raising the possibility that the antiparallel orientation preference and/or the dimeric oligomerization state are due to interactions of the swap domains. To better understand how structural specificity is encoded in Bcr, coiled-coil constructs containing either an N- or C-terminal cysteine were synthesized without the swap domain. When cross-linked to adopt exclusively parallel or antiparallel orientations, these showed similar circular dichroism spectra. Both constructs formed coiled-coil dimers, but the antiparallel construct was approximately 16 degrees C more stable than the parallel to thermal denaturation. Equilibrium disulfide-exchange studies confirmed that the isolated coiled-coil homodimer shows a very strong preference for the antiparallel orientation. We conclude that the orientation and oligomerization preferences of Bcr are not caused by the presence of the swap domains, but rather are directly encoded in the coiled-coil sequence. We further explored possible determinants of structural specificity by mutating residues in the d position of the coiled-coil core. Some of the mutations caused a change in orientation specificity, and all of the mutations led to the formation of higher-order oligomers. In the absence of the swap domain, these residues play an important role in disfavoring alternate states and are especially important for encoding dimeric oligomerization specificity.


Subject(s)
Fusion Proteins, bcr-abl/chemistry , Protein Structure, Quaternary , Protein Structure, Secondary , Amino Acid Sequence , Circular Dichroism , Dimerization , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment
15.
Structure ; 13(2): 225-34, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15698566

ABSTRACT

The study of short, autonomously folding peptides, or "miniproteins," is important for advancing our understanding of protein stability and folding specificity. Although many examples of synthetic alpha-helical structures are known, relatively few mixed alpha/beta structures have been successfully designed. Only one mixed-secondary structure oligomer, an alpha/beta homotetramer, has been reported thus far. In this report, we use structural analysis and computational design to convert this homotetramer into the smallest known alpha/beta-heterotetramer. Computational screening of many possible sequence/structure combinations led efficiently to the design of short, 21-residue peptides that fold cooperatively and autonomously into a specific complex in solution. A 1.95 A crystal structure reveals how steric complementarity and charge patterning encode heterospecificity. The first- and second-generation heterotetrameric miniproteins described here will be useful as simple models for the analysis of protein-protein interaction specificity and as structural platforms for the further elaboration of folding and function.


Subject(s)
Computational Biology , Peptides/chemistry , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Molecular Sequence Data , Mutation/genetics , Peptides/genetics , Protein Folding , Protein Structure, Secondary
16.
Biochemistry ; 43(13): 3880-90, 2004 Apr 06.
Article in English | MEDLINE | ID: mdl-15049695

ABSTRACT

In recent years, two methods have been developed that may eventually allow the targeted regulation of a broad repertoire of genes. The engineered protein strategy involves selecting Cys(2)His(2) zinc finger proteins that will recognize specific sites in the major groove of DNA. The small molecule approach utilizes pairing rules for pyrrole-imidazole polyamides that target specific sites in the minor groove. To understand how these two methods might complement each other, we have begun exploring how polyamides and zinc fingers interact when they bind the same site on opposite grooves of DNA. Although structural comparisons show no obvious source of van der Waals collisions, we have found a significant "negative cooperativity" when the two classes of compounds are directed to the overlapping sites. Examining available crystal structures suggests that this may reflect differences in the precise DNA conformation, especially with regard to width and depth of the grooves, that is preferred for binding. These results may give new insights into the structural requirements for zinc finger and polyamide binding and may eventually lead to the development of even more powerful and flexible schemes for regulating gene expression.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA/antagonists & inhibitors , DNA/chemistry , Nucleic Acid Conformation , Zinc Fingers , Allosteric Regulation , Base Sequence , Binding, Competitive , Computer Simulation , DNA Footprinting , Deoxyribonuclease I/chemistry , Early Growth Response Protein 1 , Electrophoretic Mobility Shift Assay , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Humans , Immediate-Early Proteins/antagonists & inhibitors , Immediate-Early Proteins/chemistry , Ligands , Models, Molecular , Molecular Sequence Data , Nylons/chemistry , Protein Binding , TATA-Box Binding Protein/antagonists & inhibitors , TATA-Box Binding Protein/chemistry , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...