Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Clin Transl Radiat Oncol ; 47: 100797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831754

ABSTRACT

Background and purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods: A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results: In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion: A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.

2.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682919

ABSTRACT

Preclinical intravital imaging such as microscopy and optical coherence tomography have proven to be valuable tools in cancer research for visualizing the tumor microenvironment and its response to therapy. These imaging modalities have micron-scale resolution but have limited use in the clinic due to their shallow penetration depth into tissue. More clinically applicable imaging modalities such as CT, MRI, and PET have much greater penetration depth but have comparatively lower spatial resolution (mm scale). To translate preclinical intravital imaging findings into the clinic, new methods must be developed to bridge this micro-to-macro resolution gap. Here we describe a dorsal skinfold window chamber tumor mouse model designed to enable preclinical intravital and clinically applicable (CT and MR) imaging in the same animal, and the image analysis platform that links these two disparate visualization methods. Importantly, the described window chamber approach enables the different imaging modalities to be co-registered in 3D using fiducial markers on the window chamber for direct spatial concordance. This model can be used for validation of existing clinical imaging methods, as well as for the development of new ones through direct correlation with "ground truth" high-resolution intravital findings. Finally, the tumor response to various treatments-chemotherapy, radiotherapy, photodynamic therapy-can be monitored longitudinally with this methodology using preclinical and clinically applicable imaging modalities. The dorsal skinfold window chamber tumor mouse model and imaging platforms described here can thus be used in a variety of cancer research studies, for example, in translating preclinical intravital microscopy findings to more clinically applicable imaging modalities such as CT or MRI.


Subject(s)
Intravital Microscopy , Magnetic Resonance Imaging , Translational Research, Biomedical , Animals , Mice , Intravital Microscopy/methods , Magnetic Resonance Imaging/methods , Translational Research, Biomedical/methods , Disease Models, Animal , Female
3.
Phys Med Biol ; 69(11)2024 May 17.
Article in English | MEDLINE | ID: mdl-38608644

ABSTRACT

Purpose. Radiation delivered over ultra-short timescales ('FLASH' radiotherapy) leads to a reduction in normal tissue toxicities for a range of tissues in the preclinical setting. Experiments have shown this reduction occurs for total delivery times less than a 'critical' time that varies by two orders of magnitude between brain (∼0.3 s) and skin (⪆10 s), and three orders of magnitude across different bowel experiments, from ∼0.01 to ⪆(1-10) s. Understanding the factors responsible for this broad variation may be important for translation of FLASH into the clinic and understanding the mechanisms behind FLASH.Methods.Assuming radiolytic oxygen depletion (ROD) to be the primary driver of FLASH effects, oxygen diffusion, consumption, and ROD were evaluated numerically for simulated tissues with pseudorandom vasculatures for a range of radiation delivery times, capillary densities, and oxygen consumption rates (OCR's). The resulting time-dependent oxygen partial pressure distribution histograms were used to estimate cell survival in these tissues using the linear quadratic model, modified to incorporate oxygen-enhancement ratio effects.Results. Independent of the capillary density, there was a substantial increase in predicted cell survival when the total delivery time was less than the capillary oxygen tension (mmHg) divided by the OCR (expressed in units of mmHg/s), setting the critical delivery time for FLASH in simulated tissues. Using literature OCR values for different normal tissues, the predicted range of critical delivery times agreed well with experimental values for skin and brain and, modifying our model to allow for fluctuating perfusion, bowel.Conclusions. The broad three-orders-of-magnitude variation in critical irradiation delivery times observed inin vivopreclinical experiments can be accounted for by the ROD hypothesis and differences in the OCR amongst simulated normal tissues. Characterization of these may help guide future experiments and open the door to optimized tissue-specific clinical protocols.


Subject(s)
Oxygen , Oxygen/metabolism , Kinetics , Time Factors , Radiotherapy/methods , Humans , Models, Biological , Oxygen Consumption/radiation effects , Cell Survival/radiation effects
4.
Article in English | MEDLINE | ID: mdl-38445180

ABSTRACT

Purpose: An integrated magnetic resonance scanner and linear accelerator (MR-linac) was implemented with daily online adaptive radiation therapy (ART). This study evaluated patient-reported experiences with their overall hospital care as well as treatment in the MR-linac environment. Methods: Patients pre-screened for MR eligibility and claustrophobia were referred to simulation on a 1.5 T MR-linac. Patient-reported experience measures were captured using two validated surveys. The 15-item MR-anxiety questionnaire (MR-AQ) was administered immediately after the first treatment to rate MR-related anxiety and relaxation. The 40-item satisfaction with cancer care questionnaire rating doctors, radiation therapists, the services and care organization and their outpatient experience was administered immediately after the last treatment using five-point Likert responses. Results were analyzed using descriptive statistics. Results: 205 patients were included in this analysis. Multiple sites were treated across the pelvis and abdomen with a median treatment time per fraction of 46 and 66 min respectively. Patients rated MR-related anxiety as "not at all" (87%), "somewhat" (11%), "moderately" (1%) and "very much so" (1%). Positive satisfaction responses ranged from 78 to 100% (median 93%) across all items. All radiation therapist-specific items were rated positively as 96-100%. The five lowest rated items (range 78-85%) were related to general provision of information, coordination, and communication. Overall hospital care was rated positively at 99%. Conclusion: In this large, single-institution prospective cohort, all patients had low MR-related anxiety and completed treatment as planned despite lengthy ART treatments with the MR-linac. Patients overall were highly satisfied with their cancer care involving ART using an MR-linac.

5.
Chem Sci ; 15(13): 4969-4980, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550701

ABSTRACT

The selective α,ß-desaturation of cyclic carbonyl compounds, which are found in the core of many steroid and bioactive molecules, using green chemistry is highly desirable. To achieve this task, we have for the first time described and solved the de novo structure of a member of the cyclohexanone dehydrogenase class of enzymes. The breadth of substrate specificity was investigated by assaying the cyclohexanone dehydrogenase, from Alicycliphilus denitrificans, against several cyclic ketones, lactones and lactams. To investigate substrate binding, a catalytic variant, Y195F, was generated and used to obtain a crystallographic complex with the natural substrate, cyclohexanone. This revealed substrate-active site interactions, as well as the proximity of the cofactor, flavin adenine dinucleotide, and enabled us to propose a mechanistic function to key amino acids. We then used molecular dynamic simulations to guide design to add functionality to the cyclohexanone dehydrogenase enzyme. The resulting W113A variant had overall improved enzyme activity and substrate scope, i.e., accepting the bulkier carbonyl compound, dihydrocoumarin. Structural analysis of the W113A variant revealed a broader, more open active site, which helped explain the modified substrate specificity. This work paves the way for future bespoke regioselective α,ß-desaturation in the synthesis of important bioactive molecules via rational enzyme engineering.

6.
Phys Imaging Radiat Oncol ; 30: 100570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38544680

ABSTRACT

Background and Purpose: Integrated magnetic resonance linear accelerator (MR-Linac) systems offer potential for biologically based adaptive radiation therapy using apparent diffusion coefficient (ADC). Accurate tracking of longitudinal ADC changes is key to establishing ADC-driven dose adaptation. Here, we report repeatability and reproducibility of intraprostatic ADC using deformable image registration (DIR) to correct for inter-fraction prostate changes. Materials and Methods: The study included within-fraction repeat ADC measurements for three consecutive fractions for 20 patients with prostate cancer treated on a 1.5 T MR-Linac. We deformably registered successive fraction T2-weighted images and applied the deformation vector field to corresponding ADC maps to align to fraction 2. We delineated gross tumour volume (GTV), peripheral zone (PZ) and prostate clinical target volume (CTV) regions-of-interest (ROIs) on T2-weighted MRI and copied to ADC maps. We computed intraclass correlation coefficients (ICC) and percent repeatability coefficient (%RC) to determine within-fraction repeatability and between-fraction reproducibility for individual voxels, mean and 10th percentile ADC values per ROI. Results: The ICC between repeats and fractions was excellent for mean and 10th percentile ADC in all ROIs (ICC > 0.86), and moderate repeatability and reproducibility existed for individual voxels (ICC > 0.542). Similarly, low %RC within-fraction (4.2-17.9 %) mean and 10th percentile ADC existed, with greater %RC between fractions (10.2-36.8 %). Higher %RC existed for individual voxel within-fraction (21.7-30.6 %) and between-fraction (32.1-34.5 %) ADC. Conclusions: Results suggest excellent ADC repeatability and reproducibility in clinically relevant ROIs using DIR to correct between-fraction anatomical changes. We established the precision of voxel-level ADC tracking for future biologically based adaptation implementation.

7.
Cureus ; 15(4): e37948, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37220469

ABSTRACT

A unique combination of triple abnormality in a willed male body donor dissection, with putative clinicopathological correlations during the subject's lifetime, is described in this case report. The subject had a three-piece artificial urinary sphincter surgically implanted around the proximal corpus spongiosum, left scrotal pouch and in the lower left abdominal wall, ostensibly for urinary incontinence during his lifetime, though the etiology of the latter was not immediately obvious. He also had a total of three accessory renal arteries involving both sides, complicated by bilateral diffuse renal atrophy from presumable glomerulosclerosis or nephrosclerosis-induced nephrotic syndrome. While each entity may not be so unique per se, each is not too common either. The combination of all three findings has not been described to date in the contemporary literature in a single male cadaver dissection. Only seven reports of artificial urinary sphincter studies on human cadaver subjects could be detected in contemporary literature, this being the eighth. Finally, there were no apparent etiopathological or pathogenetic mechanisms to explain the occurrence of each or the coexistence of all of them in a single male cadaveric subject. The artificial urinary sphincter was reviewed with respect to its characteristics, placement, and efficacy. An attempt was made to establish the cause-effect relationship between the artificial sphincter and urinary incontinence that necessitated the implant. Thereafter, a clinicopathological correlation was proposed in this case report to reconcile the concomitance of urinary incontinence, bilateral accessory renal arteries, and bilateral renal atrophy. An embryogenetic mechanism of the aberrant renal arteries was also suggested. Physician awareness from the standpoint of preoperative investigation of such cases was also highlighted.

8.
Med Phys ; 50(3): 1893-1904, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594511

ABSTRACT

PURPOSE: There is evidence that the population of cells that experience fluctuating oxygen levels ("acute," or, "cyclic" hypoxia) are more radioresistant than chronically hypoxic ones and hence, this population may determine radiotherapy (RT) response, in particular for hypofractionated RT, where reoxygenation may not be as prominent. A considerable effort has been devoted to examining the impact of hypoxia on hypofractionated RT; however, much less attention has been paid to cyclic hypoxia specifically and the role its kinetics may play in determining the efficacy of these treatments. Here, a simple mathematical model of cyclic hypoxia and fractionation effects was worked out to quantify this. METHODS: Cancer clonogen survival fraction was estimated using the linear quadratic model, modified to account for oxygen enhancement effects. An analytic approximation for oxygen transport away from a random network of capillaries with fluctuating oxygen levels was used to model inter-fraction tissue oxygen kinetics. The resulting survival fraction formula was used to derive an expression for the iso-survival biologically effective dose (BED), BEDiso-SF . These were computed for some common extra-cranial hypofractionated RT regimens. RESULTS: Using relevant literature parameter values, inter-fraction fluctuations in oxygenation were found to result in an added 1-2 logs of clonogen survival fraction in going from five fractions to one for the same nominal BED (i.e., excluding the effects of oxygen levels on radiosensitivity). BEDiso-SF 's for most ultra-hypofractionated (five or fewer fractions) regimens in a given tumor site are similar in magnitude, suggesting iso-efficacy for common fractionation schedules. CONCLUSIONS: Although significant, the loss of cell-killing with increasing hypofractionation is not nearly as large as previous estimates based on the assumption of complete reoxygenation between fractions. Most ultra-hypofractionated regimens currently in place offer sufficiently high doses to counter this loss of cell killing, although care should be taken in implementing single-fraction regimens.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Radiation Dose Hypofractionation , Lung Neoplasms/radiotherapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Hypoxia , Oxygen/metabolism , Models, Biological
9.
J Aerosol Med Pulm Drug Deliv ; 36(1): 34-43, 2023 02.
Article in English | MEDLINE | ID: mdl-36695722

ABSTRACT

Background: Dry powder inhalers (DPIs) require patients to impart sufficient energy through inhalation to ensure adequate dose emission, medication deaggregation, and resultant particle sizes suitable for lung deposition. There is an ongoing debate regarding the level of inspiratory effort, and therefore inspiratory flow rate, needed for optimal dose delivery from DPIs. Materials and Methods: The delivered dose (DD) and fine particle fraction (FPF) for each component of fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) 100/62.5/25 µg and FF/UMEC/VI 200/62.5/25 µg ELLIPTA DPIs were assessed at flow rates of 30, 60, and 90 L/min. Electronic lung (eLung) (eLung; an electronic breathing simulator) assessments were conducted to replicate inhalation profiles representing a wide range of inhalation parameters and inhaled volumes achieved by patients with chronic obstructive pulmonary disease (COPD) or asthma of all severity levels. Timing and duration of dose emission were assessed using a particle detector located at the entrance of an anatomical throat cast attached to the eLung. Results: During DD assessment, a mean of >80% of the nominal blister content (nbc) was emitted from the ELLIPTA DPI at all flow rates. In Next Generation Impactor assessments, the observed mean DD across flow rates for FF/UMEC/VI 100/62.5/25 µg ranged from 85.9% to 97.0% of nbc and 84.0% to 93.5% for FF/UMEC/VI 200/62.5/25 µg. In eLung assessments, 82.8% to 95.5% of nbc was delivered across the PIF range, 43.5 to 129.9 L/min (COPD), and 85.1% to 92.3% across the PIF range, 67.4 to 129.9 L/min (asthma). The FPF (mass <5 µm; % nbc) for each component was comparable across all flow rates and inhalation profiles. Dose emission timings indicated that near-complete dose emission occurs before reaching PIF. Conclusions: Dose delivery assessments across all flow rates and inhalation profiles indicate that patients with all severity levels of COPD or asthma can achieve the required inspiratory effort for efficient delivery of all components of FF/UMEC/VI from the ELLIPTA DPI. Dose emission profiles suggest rapid and near-complete dose delivery from the ELLIPTA DPI before reaching PIF.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Dry Powder Inhalers , Androstadienes , Pulmonary Disease, Chronic Obstructive/drug therapy , Asthma/drug therapy , Chlorobenzenes/therapeutic use , Quinuclidines/therapeutic use , Fluticasone , Drug Combinations , Bronchodilator Agents
10.
Phys Med Biol ; 67(24)2022 12 12.
Article in English | MEDLINE | ID: mdl-36541560

ABSTRACT

Tumours exhibit abnormal interstitial structures and vasculature function often leading to impaired and heterogeneous drug delivery. The disproportionate spatial accumulation of a drug in the interstitium is determined by several microenvironmental properties (blood vessel distribution and permeability, gradients in the interstitial fluid pressure). Predictions of tumour perfusion are key determinants of drug delivery and responsiveness to therapy. Pharmacokinetic models allow for the quantification of tracer perfusion based on contrast enhancement measured with non-invasive imaging techniques. An advanced cross-voxel exchange model (CVXM) was recently developed to provide a comprehensive description of tracer extravasation as well as advection and diffusion based on cross-voxel tracer kinetics (Sinnoet al2021). Transport parameters were derived from DCE-MRI of twenty TS-415 human cervical carcinoma xenografts by using CVXM. Tracer velocity flows were measured at the tumour periphery (mean 1.78-5.82µm.s-1) pushing the contrast outward towards normal tissue. These elevated velocity measures and extravasation rates explain the heterogeneous distribution of tracer across the tumour and its accumulation at the periphery. Significant values for diffusivity were deduced across the tumours (mean 152-499µm2.s-1). CVXM resulted in generally smaller values for the extravasation parameterKext(mean 0.01-0.04 min-1) and extravascular extracellular volume fractionve(mean 0.05-0.17) compared to the standard Tofts parameters, suggesting that Toft model underestimates the effects of inter-voxel exchange. The ratio of Tofts' extravasation parameters over CVXM's was significantly positively correlated to the cross-voxel diffusivity (P< 0.0001) and velocity (P= 0.0005). Tofts' increasedvemeasurements were explained using Sinnoet al(2021)'s theoretical work. Finally, a scan time of 15 min renders informative estimations of the transport parameters. However, a duration as low as 7.5 min is acceptable to recognize the spatial variation of transport parameters. The results demonstrate the potential of utilizing CVXM for determining metrics characterizing the exchange of tracer between the vasculature and the tumour tissue. Like for many earlier models, additional work is strongly recommended, in terms of validation, to develop more confidence in the results, motivating future laboratory work in this regard.


Subject(s)
Contrast Media , Uterine Cervical Neoplasms , Female , Humans , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Diffusion
11.
Food Res Int ; 157: 111399, 2022 07.
Article in English | MEDLINE | ID: mdl-35761653

ABSTRACT

Helichrysum italicum (H. italicum) is a halophyte shrub with bright yellow flowers with a strong curry-like aroma. The essential oils of H. italicum have been used in the production of cosmetics and pharmaceuticals, due to their antiallergic and anti-inflammatory properties. In the agri-food sector, H. italicum flowers can be used for seasoning and flavoring food, and as natural food preservatives. Here, we report on the composition, bioactive compounds, and nutritive value of H. italicum flowers. Flowers were mainly composed of carbohydrates (>80 % dry weight), followed by minerals (6.31 ± 0.95 % dw), protein (5.44 ± 0.35 % dw), and lipids (3.59 % ± 0.53 % dw). High percentages of Fe, Zn, Ca, and K were found in the flower material, along with a high content in antioxidants, polyphenols, and carotenoids, as corroborated by the nuclear magnetic resonance (NMR) data. Flowers were mainly composed of saturated fatty acids (SFAs) (54.50 ± 0.95 % of total FA), followed by polyunsaturated fatty acids (PUFAs) (37.73 ± 1.25 % of total FA) and monounsaturated fatty acids (MUFAs) (7.77 ± 0.34 %), as detected by gas chromatography mass spectrometry (GC-MS). The omega-6 PUFA linoleic acid (22.55 ± 0.76 % of total FA) was the most abundant fatty acid found. Flower extracts showed antimicrobial activity against Saccharomyces cerevisiae and Komagataella phaffii, as well as against Gram-negative (Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus) bacteria. H. italicum flower material was nontoxic to human intestinal Caco-2 model cells at concentrations up to 1.0 % w/v.


Subject(s)
Helichrysum , Oils, Volatile , Caco-2 Cells , Flowers/chemistry , Helichrysum/chemistry , Humans , Nutritive Value , Oils, Volatile/chemistry
12.
Phys Med Biol ; 67(11)2022 06 02.
Article in English | MEDLINE | ID: mdl-35576920

ABSTRACT

Purpose.It has been postulated that the delivery of radiotherapy at ultra-high dose rates ('FLASH') reduces normal tissue toxicities by depleting them of oxygen. The fraction of normal tissue and cancer cells surviving radiotherapy depends on dose and oxygen levels in an exponential manner and even a very small fraction of tissue at low oxygen levels can determine radiotherapy response. To quantify the differential impact of FLASH radiotherapy on normal and tumour tissues, the spatial heterogeneity of oxygenation in tissue should thus be accounted for.Methods.The effect of FLASH on radiation-induced normal and tumour tissue cell killing was studied by simulating oxygen diffusion, metabolism, and radiolytic oxygen depletion (ROD) over domains with simulated capillary architectures. To study the impact of heterogeneity, two architectural models were used: (1) randomly distributed capillaries and (2) capillaries forming a regular square lattice array. The resulting oxygen partial pressure distribution histograms were used to simulate normal and tumour tissue cell survival using the linear quadratic model of cell survival, modified to incorporate oxygen-enhancement ratio effects. The ratio ('dose modifying factors') of conventional low-dose-rate dose and FLASH dose at iso-cell survival was computed and compared with empirical iso-toxicity dose ratios.Results.Tumour cell survival was found to be increased by FLASH as compared to conventional radiotherapy, with a 0-1 order of magnitude increase for expected levels of tumour hypoxia, depending on the relative magnitudes of ROD and tissue oxygen metabolism. Interestingly, for the random capillary model, the impact of FLASH on well-oxygenated (normal) tissues was found to be much greater, with an estimated increase in cell survival by up to 10 orders of magnitude, even though reductions in mean tissue partial pressure were modest, less than ∼7 mmHg for the parameter values studied. The dose modifying factor for normal tissues was found to lie in the range 1.2-1.7 for a representative value of normal tissue oxygen metabolic rate, consistent with preclinical iso-toxicity results.Conclusions.The presence of very small nearly hypoxic regions in otherwise well-perfused normal tissues with high mean oxygen levels resulted in a greater proportional sparing of normal tissue than tumour cells during FLASH irradiation, possibly explaining empirical normal tissue sparing and iso-tumour control results.


Subject(s)
Neoplasms , Radiation Oncology , Cell Survival , Humans , Neoplasms/radiotherapy , Oxygen/metabolism , Radiotherapy , Radiotherapy Dosage
13.
Sci Rep ; 12(1): 6140, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414078

ABSTRACT

Stereotactic body radiotherapy (SBRT) is an emerging cancer treatment due to its logistical and potential therapeutic benefits as compared to conventional radiotherapy. However, its mechanism of action is yet to be fully understood, likely involving the ablation of tumour microvasculature by higher doses per fraction used in SBRT. In this study, we hypothesized that longitudinal imaging and quantification of the vascular architecture may elucidate the relationship between the microvasculature and tumour response kinetics. Pancreatic human tumour xenografts were thus irradiated with single doses of [Formula: see text], [Formula: see text] and [Formula: see text] Gy to simulate the first fraction of a SBRT protocol. Tumour microvascular changes were monitored with optical coherence angiography for up to [Formula: see text] weeks following irradiation. The temporal kinetics of two microvascular architectural metrics were studied as a function of time and dose: the diffusion-limited fraction, representing poorly vascularized tissue [Formula: see text] µm from the nearest detected vessel, and the vascular distribution convexity index, a measure of vessel aggregation at short distances. These biological metrics allowed for dose dependent temporal evaluation of tissue (re)vascularization and vessel aggregation after radiotherapy, showing promise for determining the SBRT dose-response relationship.


Subject(s)
Neoplasms , Radiosurgery , Angiography , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
14.
Sci Rep ; 12(1): 3159, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210476

ABSTRACT

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature ([Formula: see text] scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft's model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT's derived vascular volume fraction (VVF) and the mean distance to nearest vessel ([Formula: see text]) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both), the area under the gadolinium-time concentration curve ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both) and [Formula: see text] ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both). Several other correlated micro-macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.

15.
Cancers (Basel) ; 14(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35158984

ABSTRACT

PURPOSE: To describe a comprehensive workflow for MRI-guided online adaptive stereotactic body radiation therapy (SBRT) specific to upper gastrointestinal cancer patients with abdominal compression on a 1.5T MR-Linac system. Additionally, we discuss the workflow's clinical feasibility and early experience in the case of 16 liver and pancreas patients. METHODS: Eleven patients with liver cancer and five patients with pancreas cancer were treated with online adaptive MRI-guidance under abdominal compression. Two liver patients received single-fraction treatments; the remainder plus all pancreas cancer patients received five fractions. A total of 65 treatment sessions were investigated to provide analytics relevant to the online adaptive processes. The quantification of target and organ motion as well as definition and validation of internal target volume (ITV) margins were performed via multi-contrast imaging provided by three different 2D cine sequences. The plan generation was driven by full re-optimization strategies and using T2-weighted 3D image series acquired by means of a respiratory-triggered exhale phase or a time-averaged imaging protocol. As a pre-requisite for the clinical development of the procedure, the image quality was thoroughly investigated via phantom measurements and numerical simulations specific to upper abdominal sites. The delivery of the online adaptive treatments was facilitated by real-time monitoring with 2D cine imaging. RESULTS: Liver 1-fraction and 5-fraction online adaptive session time were on average 80 and 67.5 min, respectively. The total session length varied between 70-90 min for a single fraction and 55-90 min for five fractions. The pancreas sessions were 54-85 min long with an average session time of 68.2 min. Target visualization on the 2D cine image data varied per patient, with at least one of the 2D cine sequences providing sufficient contrast to confidently identify its location and confirm reproducibility of ITV margins. The mean/range of absolute and relative dose values for all treatment sessions evaluated with ArcCheck were 90.6/80.9-96.1% and 99/95.4-100%, respectively. CONCLUSION: MR-guidance is feasible for liver and pancreas tumors when abdominal compression is used to reduce organ motion, improve imaging quality, and achieve a robust intra- and inter-fraction patient setup. However, the treatment length is significantly longer than for the conventional linac, and patient compliance is paramount for the successful completion of the treatment. Opportunities for reducing the online adaptive session time should be explored. As the next steps, dose-of-the-day and dose accumulation analysis and tools are needed to enhance the workflow and to help further refine the online re-planning processes.

16.
Phys Med Biol ; 66(20)2021 10 14.
Article in English | MEDLINE | ID: mdl-34650009

ABSTRACT

Predictions of tumour perfusion are key determinants of drug delivery and responsiveness to therapy. Pharmacokinetic models allow for the estimation of perfusion properties of tumour tissues but many assume no dispersion associated with tracer transport away from the capillaries and through the tissue. At the level of a voxel, this translates to assuming no cross-voxel tracer exchange, often leading to the misinterpretation of derived perfusion parameters. Tofts model (TM), a compartmental model widely used in oncology, also makes this assumption. A more realistic description is required to quantify kinetic properties of tracers, such as convection and diffusion. We propose a Cross-Voxel Exchange Model (CVXM) for analysing cross-voxel tracer kinetics.In silicodatasets quantifying the roles of convection and diffusion in tracer transport (which TM ignores) were employed to investigate the interpretation of Tofts' perfusion parameters compared to CVXM. TM returned inaccurate values ofKtransandvewhere diffusive and convective mechanisms are pronounced (up to 20% and 300% error respectively). A mathematical equation, developed in this work, predicts and gives the correct physiological interpretation of Tofts've.Finally, transport parameters were derived from dynamic contrast enhanced-magnetic resonance imaging of a TS-415 human cervical carcinoma xenograft by using TM and CVXM. The latter deduced lower values ofKtransandvecompared to TM (lower by up to 63% and 76% respectively). It also allowed the detection of a diffusive flux (mean diffusivity 155µm2s-1) in the tumour tissue, as well as an increased convective flow at the periphery (mean velocity 2.3µm s-1detected). The results serve as a proof of concept establishing the feasibility of using CVXM for accurately determining transport metrics that characterize the exchange of tracer between voxels. CVXM needs to be investigated further as its parameters can be linked to the tumour microenvironment properties (permeability, pressure…), potentially leading to enhanced personalized treatment planning.


Subject(s)
Contrast Media , Uterine Cervical Neoplasms , Contrast Media/pharmacokinetics , Diffusion Magnetic Resonance Imaging , Female , Humans , Kinetics , Magnetic Resonance Imaging/methods , Tumor Microenvironment
17.
Phys Med Biol ; 66(18)2021 09 09.
Article in English | MEDLINE | ID: mdl-34438383

ABSTRACT

Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Hypoxia , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Positron-Emission Tomography , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
18.
J Neurotrauma ; 38(19): 2723-2730, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34036801

ABSTRACT

Intimate partner violence (IPV) affects at least one in three women worldwide, and up to 92% report symptoms consistent with brain injury (BI). Although a handful of studies have examined different aspects of brain structure and function in this population, none has characterized potential deficits in cognitive-motor function. This knowledge gap was addressed in the current study by having participants who had experienced IPV complete the bimanual Object Hit & Avoid (OHA) task in a Kinesiological Instrument for Normal and Altered Reaching Movement (KINARM) End-Point Laboratory. BI load, post-traumatic stress disorder (PTSD), anxiety, depression, substance use, and history of abuse were also assessed. A stepwise multiple regression was undertaken to explore the relationship between BI load and task performance while accounting for comorbid psychopathologies. Results demonstrated that BI load accounted for a significant amount of variability in the number of targets hit and the average hand speed. PTSD, anxiety, and depression also contributed significantly to the variability in these measures as well as to the number and proportion of distractor hits, and the object processing rate. Taken together, these findings suggest that IPV-related BI, as well as comorbid PTSD, anxiety, and depression, disrupt the processing required to quickly and accurately hit targets while avoiding distractors. This pattern of results reflects the complex interaction between the physical injuries induced by the episodes of IPV and the resulting impacts that these experiences have on mental health.


Subject(s)
Brain Injuries/physiopathology , Brain Injuries/psychology , Cognition Disorders/epidemiology , Cognition/physiology , Intimate Partner Violence/psychology , Motor Activity/physiology , Motor Disorders/epidemiology , Adult , Brain Injuries/etiology , Cohort Studies , Executive Function/physiology , Female , Humans , Sex Factors
19.
PLoS One ; 16(3): e0248190, 2021.
Article in English | MEDLINE | ID: mdl-33711051

ABSTRACT

Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both ß-1,4-N-acetyl- and ß-1,4-N,6-O-diacetylmuramidase activities, cleaving the ß-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.


Subject(s)
Fungi/metabolism , Muramidase/metabolism , Protein Conformation , Animals , Cell Wall/metabolism , Crystallography, X-Ray , Models, Molecular
20.
Ann Biomed Eng ; 49(2): 812-821, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32959135

ABSTRACT

The lungs have long been considered a desired route for drug delivery but, there is still a lack of strategies to rationally target delivery sites especially in the presence of heterogeneous airway disease. Furthermore, no standardized system has been proposed to rapidly test different ventilation strategies and how they alter the overall and regional deposition pattern in the airways. In this study, a 3D printed symmetric bifurcating tree model mimicking part of the human airway tree was developed that can be used to quantify the regional deposition patterns of different delivery methodologies. The model is constructed in a novel way that allows for repeated measurements of regional deposition using reusable parts. During ventilation, nebulized ~3-micron-sized fluid droplets were delivered into the model. Regional delivery, quantified by precision weighing individual airways, was highly reproducible. A successful strategy to control regional deposition was achieved by combining an inspiratory wave form with a "breath hold" pause after each inspiration. Specifically, the second generation of the tree was successfully targeted, and deposition was increased by up to four times in generation 2 when compared to a ventilation without the breath hold (p < 0.0001). Breath hold was also demonstrated to facilitate deposition into blocked regions of the model, which mimic airway closure during an asthma that receive no flow during inhalation. Additionally, visualization experiments demonstrated that in the absence of fluid flow, the deposition of 3-micron water droplets is dominated by gravity, which, to our knowledge, has not been confirmed under standard laboratory conditions.


Subject(s)
Breath Holding , Lung/metabolism , Models, Anatomic , Models, Biological , Aerosols , Computer Simulation , Humans , Particle Size , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...