Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2304866121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483992

ABSTRACT

Accelerating the measurement for discrimination of samples, such as classification of cell phenotype, is crucial when faced with significant time and cost constraints. Spontaneous Raman microscopy offers label-free, rich chemical information but suffers from long acquisition time due to extremely small scattering cross-sections. One possible approach to accelerate the measurement is by measuring necessary parts with a suitable number of illumination points. However, how to design these points during measurement remains a challenge. To address this, we developed an imaging technique based on a reinforcement learning in machine learning (ML). This ML approach adaptively feeds back "optimal" illumination pattern during the measurement to detect the existence of specific characteristics of interest, allowing faster measurements while guaranteeing discrimination accuracy. Using a set of Raman images of human follicular thyroid and follicular thyroid carcinoma cells, we showed that our technique requires 3,333 to 31,683 times smaller number of illuminations for discriminating the phenotypes than raster scanning. To quantitatively evaluate the number of illuminations depending on the requisite discrimination accuracy, we prepared a set of polymer bead mixture samples to model anomalous and normal tissues. We then applied a home-built programmable-illumination microscope equipped with our algorithm, and confirmed that the system can discriminate the sample conditions with 104 to 4,350 times smaller number of illuminations compared to standard point illumination Raman microscopy. The proposed algorithm can be applied to other types of microscopy that can control measurement condition on the fly, offering an approach for the acceleration of accurate measurements in various applications including medical diagnosis.


Subject(s)
Microscopy , Spectrum Analysis, Raman , Humans , Microscopy/methods , Spectrum Analysis, Raman/methods , Thyroid Gland , Nonlinear Optical Microscopy , Machine Learning
2.
Biosensors (Basel) ; 13(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37622905

ABSTRACT

The blood-brain barrier (BBB) is a selective barrier that controls the transport between the blood and neural tissue features and maintains brain homeostasis to protect the central nervous system (CNS). In vitro models can be useful to understand the role of the BBB in disease and assess the effects of drug delivery. Recently, we reported a 3D BBB model with perfusable microvasculature in a Transwell insert. It replicates several key features of the native BBB, as it showed size-selective permeability of different molecular weights of dextran, activity of the P-glycoprotein efflux pump, and functionality of receptor-mediated transcytosis (RMT), which is the most investigated pathway for the transportation of macromolecules through endothelial cells of the BBB. For quality control and permeability evaluation in commercial use, visualization and quantification of the 3D vascular lumen structures is absolutely crucial. Here, for the first time, we report a rapid, non-invasive optical coherence tomography (OCT)-based approach to quantify the microvessel network in the 3D in vitro BBB model. Briefly, we successfully obtained the 3D OCT images of the BBB model and further processed the images using three strategies: morphological imaging processing (MIP), random forest machine learning using the Trainable Weka Segmentation plugin (RF-TWS), and deep learning using pix2pix cGAN. The performance of these methods was evaluated by comparing their output images with manually selected ground truth images. It suggested that deep learning performed well on object identification of OCT images and its computation results of vessel counts and surface areas were close to the ground truth results. This study not only facilitates the permeability evaluation of the BBB model but also offers a rapid, non-invasive observational and quantitative approach for the increasing number of other 3D in vitro models.


Subject(s)
Blood-Brain Barrier , Deep Learning , Blood-Brain Barrier/diagnostic imaging , Endothelial Cells , Tomography, Optical Coherence , Microvessels/diagnostic imaging , Algorithms
3.
Anal Chem ; 95(33): 12298-12305, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37561910

ABSTRACT

Raman hyperspectral microscopy is a valuable tool in biological and biomedical imaging. Because Raman scattering is often weak in comparison to other phenomena, prevalent spectral fluctuations and contaminations have brought advancements in analytical and chemometric methods for Raman spectra. These chemometric advances have been key contributors to the applicability of Raman imaging to biological systems. As studies increase in scale, spectral contamination from extrinsic background, intensity from sources such as the optical components that are extrinsic to the sample of interest, has become an emerging issue. Although existing baseline correction schemes often reduce intrinsic background such as autofluorescence originating from the sample of interest, extrinsic background is not explicitly considered, and these methods often fail to reduce its effects. Here, we show that extrinsic background can significantly affect a classification model using Raman images, yielding misleadingly high accuracies in the distinction of benign and malignant samples of follicular thyroid cell lines. To mitigate its effects, we develop extrinsic background correction (EBC) and demonstrate its use in combination with existing methods on Raman hyperspectral images. EBC isolates regions containing the smallest amounts of sample materials that retain extrinsic contributions that are specific to the device or environment. We perform classification both with and without the use of EBC, and we find that EBC retains biological characteristics in the spectra while significantly reducing extrinsic background. As the methodology used in EBC is not specific to Raman spectra, correction of extrinsic effects in other types of hyperspectral and grayscale images is also possible.

4.
FEBS Lett ; 597(11): 1517-1527, 2023 06.
Article in English | MEDLINE | ID: mdl-36807196

ABSTRACT

An essential challenge in diagnosing states of nonalcoholic fatty liver disease (NAFLD) is the early prediction of progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) before the disease progresses. Histological diagnoses of NAFLD rely on the appearance of anomalous tissue morphologies, and it is difficult to segment the biomolecular environment of the tissue through a conventional histopathological approach. Here, we show that hyperspectral Raman imaging provides diagnostic information on NAFLD in rats, as spectral changes among disease states can be detected before histological characteristics emerge. Our results demonstrate that Raman imaging of NAFLD can be a useful tool for histopathologists, offering biomolecular distinctions among tissue states that cannot be observed through standard histopathological means.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/pathology , Liver/pathology
5.
Biochem Biophys Res Commun ; 640: 192-201, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36521425

ABSTRACT

Follicular neoplasms of the thyroid include follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA). However, the differences in cytological findings between FTC and FTA remain undetermined. Here, we aimed to evaluate the accumulation of lipid droplets (LDs) and the expression of adipophilin (perilipin 2/ADRP/ADFP), a known LD marker, in cultured FTC cells. We also immunohistochemically compared adipophilin expression in the FTC and FTA of resected human thyroid tissues. Cultured FTC (FTC-133 and RO82W-1) possessed increased populations of LDs compared to thyroid follicular epithelial (Nthy-ori 3-1) cells. In vitro treatment with phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling inhibitors (LY294002, MK2206, and rapamycin) in FTC-133 cells downregulated the PI3K/Akt/mTOR/sterol regulatory element-binding protein 1 (SREBP1) signaling pathway, resulting in a significant reduction in LD accumulation. SREBP1 is a master transcription factor that controls lipid metabolism. Fluorescence immunocytochemistry revealed adipophilin expression in the LDs of FTC-133 cells. Immunohistochemical analysis of surgically resected human thyroid tissues revealed significantly increased expression of adipophilin in FTC compared with FTA and adjacent non-tumorous thyroid epithelia. Taken together, LDs and adipophilin were abundant in cultured FTC; the evaluation of adipophilin expression can help distinguish FTC from FTA in surgical specimens.


Subject(s)
Adenocarcinoma, Follicular , Thyroid Neoplasms , Humans , Adenocarcinoma, Follicular/metabolism , Adenocarcinoma, Follicular/pathology , Lipid Droplets/metabolism , Perilipin-2 , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thyroid Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism
6.
J Microbiol Methods ; 190: 106326, 2021 11.
Article in English | MEDLINE | ID: mdl-34517040

ABSTRACT

The purpose is classification of stress tolerances of spoilage bacteria using Raman spectra and chemometrics. We obtained Raman spectra of six spoilage bacteria. Classification models were constructed with support vector machine and classified food-related stress tolerance with 90% accuracy, which provides bacterial characteristics specific to environment reducing food spoilage.


Subject(s)
Bacteria/classification , Bacterial Typing Techniques/methods , Chemometrics/methods , Food Microbiology , Food Preservatives/pharmacology , Spectrum Analysis, Raman/methods , Bacteria/drug effects , Food Safety , Glycine/pharmacology , Sodium Acetate/pharmacology , Sodium Chloride/pharmacology , Stress, Physiological , Support Vector Machine
7.
J Phys Chem B ; 123(20): 4358-4372, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31035762

ABSTRACT

We use Raman microscopic images with high spatial and spectral resolution to investigate differences between human follicular thyroid (Nthy-ori 3-1) and follicular thyroid carcinoma (FTC-133) cells, a well-differentiated thyroid cancer. Through comparison to classification of single-cell Raman spectra, the importance of subcellular information in the Raman images is emphasized. Subcellular information is extracted through a coarse-graining of the spectra at high spatial resolution (∼1.7 µm2), producing a set of characteristic spectral groups representing locations having similar biochemical compositions. We develop a cell classifier based on the frequencies at which the characteristic spectra appear within each of the single cells. Using this classifier, we obtain a more accurate (89.8%) distinction of FTC-133 and Nthy-ori 3-1, in comparison to single-cell spectra (77.6%). We also infer which subcellular components are important to cellular distinction; we find that cancerous FTC-133 cells contain increased populations of lipid-containing components and decreased populations of cytochrome-containing components relative to Nthy-ori 3-1, and that the regions containing these contributions are largely outside the cell nuclei. In addition to increased classification accuracy, this approach provides rich subcellular information about biochemical differences and cellular locations associated with the distinction of the normal and cancerous follicular thyroid cells.


Subject(s)
Adenocarcinoma, Follicular/pathology , Spectrum Analysis, Raman , Thyroid Neoplasms/pathology , Unsupervised Machine Learning , Cell Nucleus , Humans , Single-Cell Analysis
8.
J Chem Phys ; 148(12): 123325, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604865

ABSTRACT

Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.


Subject(s)
Adenylate Kinase/chemistry , Adenylate Kinase/metabolism , Fluorescence Resonance Energy Transfer , Models, Molecular , Physical Phenomena , Protein Conformation , Protein Denaturation , Protein Folding , Thermodynamics
9.
Sci Rep ; 5: 9174, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25779909

ABSTRACT

Characterization of states, the essential components of the underlying energy landscapes, is one of the most intriguing subjects in single-molecule (SM) experiments due to the existence of noise inherent to the measurements. Here we present a method to extract the underlying state sequences from experimental SM time-series. Taking into account empirical error and the finite sampling of the time-series, the method extracts a steady-state network which provides an approximation of the underlying effective free energy landscape. The core of the method is the application of rate-distortion theory from information theory, allowing the individual data points to be assigned to multiple states simultaneously. We demonstrate the method's proficiency in its application to simulated trajectories as well as to experimental SM fluorescence resonance energy transfer (FRET) trajectories obtained from isolated agonist binding domains of the AMPA receptor, an ionotropic glutamate receptor that is prevalent in the central nervous system.


Subject(s)
Models, Theoretical , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...