Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2797: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38570450

ABSTRACT

Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.


Subject(s)
Isotopes , Proteins , Proteins/chemistry , Isotope Labeling/methods , Nitrogen Isotopes
2.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354232

ABSTRACT

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Molecular Conformation , Protein Isoforms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
3.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395209

ABSTRACT

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Subject(s)
Monomeric GTP-Binding Proteins , Monomeric GTP-Binding Proteins/metabolism , Nucleotides , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Sepharose , Guanosine Triphosphate/metabolism , Guanosine Diphosphate/metabolism
4.
Commun Biol ; 6(1): 594, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268708

ABSTRACT

Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.


Subject(s)
Proto-Oncogene Proteins p21(ras) , ras Proteins , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Binding Sites , ras Proteins/metabolism , Protein Conformation , Magnetic Resonance Spectroscopy
5.
PLoS One ; 17(8): e0272364, 2022.
Article in English | MEDLINE | ID: mdl-35947606

ABSTRACT

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35213144

ABSTRACT

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Physiological Phenomena , Humans , Molecular Conformation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/chemistry
7.
bioRxiv ; 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34729560

ABSTRACT

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.

8.
Nat Commun ; 12(1): 1176, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608534

ABSTRACT

The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structures and published data, we provide a model of RAS-RAF complexation at the membrane, and molecular insights into RAS-RAF interaction during the process of RAS-mediated RAF activation.


Subject(s)
Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/chemistry , ras Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains/genetics , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins p21(ras)/genetics
9.
J Sports Sci ; 39(4): 380-387, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32951530

ABSTRACT

In an effort to evaluate the mechanisms underpinning performance in alpine ski racing, researchers have focused on the predictive validity of measures derived from fitness assessments. However, a limitation of this literature is the absence of practice time, since prolonged training may naturally develop specific fitness capacities, making some tests of physical ability less predictive of performance. We examine the relationship between fitness tests, practice, and performance using linear regressions with fitness test data, practice history data, and performance results from adolescent alpine ski racers attending professional development academies in the United States (N = 82). Only aerobic capacity (i.e. 20 m shuttle run) was significantly associated with more practice time. After controlling for practice hours, 5.5-6.5% of variance in ski performance was significantly explained by assessments of lower body power (i.e. standing long jump, triple jump), anaerobic capacity (i.e. 60 s box jump), and upper body strength/endurance (i.e. push-ups). Findings highlight the important role of anaerobic power on alpine ski racing performance, which may be developed outside of regular practice, possibly through weight training or physical maturation. The small variance explained by physical/physiological measures suggests that superior ski performance is likely a product of various skills and characteristics (e.g. technical, tactical, perceptual-cognitive, psychosocial).


Subject(s)
Athletic Performance/physiology , Physical Fitness/physiology , Skiing/physiology , Adolescent , Age Factors , Anaerobiosis , Athletic Performance/statistics & numerical data , Biophysical Phenomena/physiology , Female , Growth/physiology , Humans , Linear Models , Male , Muscle Strength/physiology , Oxygen Consumption/physiology , Regression Analysis , Retrospective Studies , Sex Factors , Skiing/statistics & numerical data , Time Factors , United States , Weight Lifting/physiology
10.
Protein Expr Purif ; 179: 105802, 2021 03.
Article in English | MEDLINE | ID: mdl-33248226

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection.


Subject(s)
COVID-19/blood , Protein Domains/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Humans , Protein Binding/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
11.
bioRxiv ; 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33236017

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection. Highlights: Improved yields of SARS-CoV-2 spike RBD through modification of DNA constructs and purification parametersTwo versions of RBD show different sensitivity in serology assaysYields of greater than 50 mg/l obtained under optimal conditionsMagnetic bead purification technology improves throughput of protein production.

12.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913056

ABSTRACT

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation
13.
bioRxiv ; 2020 May 28.
Article in English | MEDLINE | ID: mdl-32511418

ABSTRACT

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.

14.
Protein Expr Purif ; 174: 105686, 2020 10.
Article in English | MEDLINE | ID: mdl-32504802

ABSTRACT

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.


Subject(s)
Betacoronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Gene Expression , HEK293 Cells , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Transfection
15.
J Biol Chem ; 295(28): 9335-9348, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32393580

ABSTRACT

The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.


Subject(s)
Colorectal Neoplasms , GTP Phosphohydrolases , MAP Kinase Signaling System , Membrane Proteins , Mutation , Proto-Oncogene Proteins p21(ras) , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Crystallography, X-Ray , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Domains , Proto-Oncogene Mas , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Exome Sequencing , raf Kinases/genetics , raf Kinases/metabolism
16.
ACS Omega ; 5(1): 832-842, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956834

ABSTRACT

The trafficking chaperone PDE6D (also referred to as PDEδ) has been nominated as a surrogate target for K-Ras4B (hereafter K-Ras). Arl2-assisted unloading of K-Ras from PDE6D in the perinuclear area is significant for correct K-Ras localization and therefore activity. However, the unloading mechanism also leads to the undesired ejection of PDE6D inhibitors. To counteract ejection, others have recently optimized inhibitors for picomolar affinities; however, cell penetration generally seems to remain an issue. To increase resilience against ejection, we engineered a "chemical spring" into prenyl-binding pocket inhibitors of PDE6D. Furthermore, cell penetration was improved by attaching a cell-penetration group, allowing us to arrive at micromolar in cellulo potencies in the first generation. Our model compounds, Deltaflexin-1 and -2, selectively disrupt K-Ras, but not H-Ras membrane organization. This selectivity profile is reflected in the antiproliferative activity on colorectal and breast cancer cells, as well as the ability to block stemness traits of lung and breast cancer cells. While our current model compounds still have a low in vitro potency, we expect that our modular and simple inhibitor redesign could significantly advance the development of pharmacologically more potent compounds against PDE6D and related targets, such as UNC119 in the future.

17.
Biophys J ; 116(6): 1049-1063, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30846362

ABSTRACT

Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.


Subject(s)
Calmodulin/metabolism , Protein Prenylation , Proto-Oncogene Proteins p21(ras)/metabolism , Amino Acid Motifs , Amino Acid Sequence , Calmodulin/chemistry , Humans , Models, Molecular , Nucleotides/metabolism , Protein Binding , Proto-Oncogene Proteins p21(ras)/chemistry
18.
Methods Mol Biol ; 1586: 65-82, 2017.
Article in English | MEDLINE | ID: mdl-28470599

ABSTRACT

The major goal of any protein expression experiment is to combine the maximum production per cell of soluble protein with the highest possible cell density to most efficiently obtain high yields of protein. A large number of parameters can be optimized in these experiments, but one of the most interesting parameters that have a strong effect on both per cell productivity and cell density is the cellular growth media coupled to the expression induction process. Using specialized media and testing multiple induction conditions, it is possible to significantly enhance the production of heterologous proteins from E. coli.


Subject(s)
Cell Culture Techniques/methods , Cloning, Molecular/methods , Culture Media/metabolism , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Animals , Escherichia coli/cytology , Escherichia coli/genetics , Gene Expression , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solubility
19.
J Biol Chem ; 286(22): 19682-92, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21478551

ABSTRACT

With increasing worldwide rates of morbidity and mortality of pulmonary fibrosis, the development of effective therapeutics for this disease is of great interest. Secretoglobin (SCGB) 3A2, a novel cytokine-like molecule predominantly expressed in pulmonary airways epithelium, exhibits anti-inflammatory and growth factor activities. In the current study SCGB3A2 was found to inhibit TGFß-induced differentiation of fibroblasts to myofibroblasts, a hallmark of the fibrogenic process, using pulmonary fibroblasts isolated from adult mice. This induction was through increased phosphorylation of STAT1 and expression of SMAD7 and decreased phosphorylation of SMAD2 and SMAD3. To demonstrate the effect of SCGB3A2 on the TGFß signaling in vivo, a bleomycin-induced pulmonary fibrosis mouse model was used. Mice were administered bleomycin intratracheally followed by intravenous injection of recombinant SCGB3A2. Histological examination in conjunction with inflammatory cell counts in bronchoalveolar lavage fluids demonstrated that SCGB3A2 suppressed bleomycin-induced pulmonary fibrosis. Microarray analysis was carried out using RNAs from lungs of bleomycin-treated mice with or without SCGB3A2 and normal mice treated with SCGB3A2. The results demonstrated that SCGB3A2 affects TGFß signaling and reduces the expression of genes involved in fibrosis. This study suggests the potential utility of SCGB3A2 for targeting TGFß signaling in the treatment of pulmonary fibrosis.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Bleomycin/adverse effects , Down-Regulation/drug effects , Proteins/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Down-Regulation/genetics , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Humans , Mice , Oligonucleotide Array Sequence Analysis , Phosphorylation/drug effects , Phosphorylation/genetics , Proteins/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Secretoglobins , Signal Transduction/genetics , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta/genetics
20.
FEMS Yeast Res ; 11(2): 168-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21166768

ABSTRACT

Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.


Subject(s)
Aspartic Acid Proteases/deficiency , Gene Expression , Kluyveromyces/enzymology , Kluyveromyces/metabolism , Recombinant Proteins/metabolism , Arecaceae/enzymology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Deletion , Kluyveromyces/genetics , Luciferases/metabolism , Molecular Sequence Data , Mutagenesis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL