Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Senses ; 29(9): 807-14, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15574816

ABSTRACT

Recent research has implicated T1R1/T1R3 as the primary taste receptor in mammals for detecting L-amino acids, including L-monosodium glutamate (MSG) and L-alanine. Previous behavioral studies with rodents found only minimal evidence that these two substances share perceptual qualities, but those studies did not control for the taste of sodium associated with MSG. This study used several behavioral methods to compare the perceptual qualities of MSG and L-alanine in rats, using amiloride (a sodium channel blocker) to reduce the sodium component of MSG taste. Detection thresholds of L-alanine in rats ranged between 0.4 and 2.5 mM, with or without amiloride added, which are similar to threshold estimates for MSG. Conditioned taste aversion (CTA) found that rats showed strong cross-generalization of CTA between MSG and L-alanine when mixed with amiloride, indicating the two substances have similar perceptual qualities. Discrimination methods showed that rats easily discriminated between L-alanine and MSG unless the cue function of sodium was reduced. The discrimination became significantly more difficult at concentrations < 100 mM when amiloride was added to all stimuli and became even more difficult when NaCl was also added to L-alanine solutions to match the sodium concentrations of MSG. These results indicate that, perceptually, MSG and L-alanine have quite similar taste qualities and support the hypothesis that these two L-amino acids activate a common taste receptor. The differences in perceptual qualities also suggest separate afferent processing of one or both substances may also be involved.


Subject(s)
Alanine/pharmacology , Behavior, Animal/drug effects , Sodium Glutamate/pharmacology , Taste/drug effects , Amiloride/pharmacology , Animals , Avoidance Learning/drug effects , Discrimination, Psychological/drug effects , Diuretics/pharmacology , Male , Rats , Rats, Sprague-Dawley , Sensory Thresholds/drug effects
2.
Chem Senses ; 29(8): 721-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15466818

ABSTRACT

Generalization of a conditioned taste aversion (CTA) is based on similarities in taste qualities shared by the aversive substance and another taste substance. CTA experiments with rats have found that an aversion to a variety of sweet stimuli will cross-generalize with monosodium glutamate (MSG) when amiloride, a sodium channel blocker, is added to all solutions to reduce the taste of sodium. These findings suggest that the glutamate anion elicits a sweet taste sensation in rats. CTA experiments, however, generally do not indicate whether two substances have different taste qualities. In this study, discrimination methods in which rats focused on perceptual differences were used to determine if they could distinguish between the tastes of MSG and four sweet substances. As expected, rats readily discriminated between two natural sugars (sucrose, glucose) and two artificial sweeteners (saccharin, SC45647). Rats also easily discriminated between MSG and glucose, saccharin and, to a lesser extent, SC45647 when the taste of the sodium ion of MSG was reduced by the addition of amiloride to all solutions, or the addition of amiloride to all solutions and NaCl to each sweet stimulus to match the concentration of Na+ in the MSG solutions. In contrast, reducing the cue function of the Na+ ion significantly decreased their ability to discriminate between sucrose and MSG. These results suggest that the sweet qualities of glutamate taste is not as dominate a component of glutamate taste as CTA experiments suggest and these qualities are most closely related to the taste qualities of sucrose. The findings of this study, in conjunction with other research, suggest that sweet and umami afferent signaling may converge through a taste receptor with a high affinity for glutamate and sucrose or a downstream transduction mechanism. These data also suggest that rats do not necessarily perceive the tastes of these sweet stimuli as similar and that these sweet stimuli are detected by multiple sweet receptors.


Subject(s)
Sodium Glutamate/pharmacology , Sweetening Agents/pharmacology , Taste/physiology , Animals , Choice Behavior/physiology , Glucose/pharmacology , Guanidines/pharmacology , Male , Rats , Saccharin/pharmacology , Sucrose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...