Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 7262, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508689

ABSTRACT

Next-generation site-specific cysteine-based antibody-drug-conjugates (ADCs) broaden therapeutic index by precise drug-antibody attachments. However, manufacturing such ADCs for clinical validation requires complex full reduction and reoxidation processes, impacting product quality. To overcome this technical challenge, we developed a novel antibody manufacturing process through cysteine (Cys) metabolic engineering in Chinese hamster ovary cells implementing a unique cysteine-capping technology. This development enabled a direct conjugation of drugs after chemoselective-reduction with mild reductant tris(3-sulfonatophenyl)phosphine. This innovative platform produces clinical ADC products with superior quality through a simplified manufacturing process. This technology also has the potential to integrate Cys-based site-specific conjugation with other site-specific conjugation methodologies to develop multi-drug ADCs and exploit multi-mechanisms of action for effective cancer treatments.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Animals , Antibodies , Antineoplastic Agents/therapeutic use , CHO Cells , Cricetinae , Cricetulus , Cysteine , Disulfides , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Metabolic Engineering
2.
Cell Rep Med ; 2(5): 100279, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34095881

ABSTRACT

Aberrant NOTCH3 signaling and overexpression is oncogenic, associated with cancer stem cells and drug resistance, yet therapeutic targeting remains elusive. Here, we develop NOTCH3-targeted antibody drug conjugates (NOTCH3-ADCs) by bioconjugation of an auristatin microtubule inhibitor through a protease cleavable linker to two antibodies with differential abilities to inhibit signaling. The signaling inhibitory antibody rapidly induces ligand-independent receptor clustering and internalization through both caveolin and clathrin-mediated pathways. The non-inhibitory antibody also efficiently endocytoses via clathrin without inducing receptor clustering but with slower lysosomal co-localization kinetics. In addition, DLL4 ligand binding to the NOTCH3 receptor mediates transendocytosis of NOTCH3-ADCs into ligand-expressing cells. NOTCH3-ADCs internalize into receptor and ligand cells independent of signaling and induce cell death in both cell types representing an atypical mechanism of ADC cytotoxicity. Treatment of xenografts with NOTCH3-ADCs leads to sustained tumor regressions, outperforms standard-of-care chemotherapy, and allows targeting of tumors that overexpress NOTCH3 independent of signaling inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Immunoconjugates/pharmacology , Receptor, Notch3/metabolism , Cell Line, Tumor/drug effects , Humans , Immunoconjugates/metabolism , Oncogenes/drug effects , Receptor, Notch3/immunology , Receptors, Notch/antagonists & inhibitors , Xenograft Model Antitumor Assays
3.
MAbs ; 13(1): 1850395, 2021.
Article in English | MEDLINE | ID: mdl-33459147

ABSTRACT

We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.


Subject(s)
Antibodies, Bispecific/immunology , CD3 Complex/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Enterotoxin/immunology , Animals , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Female , Humans , Hybridomas , Macaca fascicularis/immunology , Macaca fascicularis/metabolism , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/metabolism , Protein Engineering/methods , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Clin Cancer Res ; 27(2): 622-631, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33148666

ABSTRACT

PURPOSE: Mortality due to acute myeloid leukemia (AML) remains high, and the management of relapsed or refractory AML continues to be therapeutically challenging. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has provided a proof of concept for an ADC-based therapeutic for AML. Several other ADCs have since entered clinical development of AML, but have met with limited success. We sought to develop a next-generation ADC for AML with a wide therapeutic index (TI) that overcomes the shortcomings of previous generations of ADCs. EXPERIMENTAL DESIGN: We compared the TI of our novel CD33-targeted ADC platform with other currently available CD33-targeted ADCs in preclinical models of AML. Next, using this next-generation ADC platform, we performed a head-to-head comparison of two attractive AML antigens, CD33 and CD123. RESULTS: Our novel ADC platform offered improved safety and TI when compared with certain currently available ADC platforms in preclinical models of AML. Differentiation between the CD33- and CD123-targeted ADCs was observed in safety studies conducted in cynomolgus monkeys. The CD33-targeted ADC produced severe hematologic toxicity, whereas minimal hematologic toxicity was observed with the CD123-targeted ADC at the same doses and exposures. The improved toxicity profile of an ADC targeting CD123 over CD33 was consistent with the more restricted expression of CD123 in normal tissues. CONCLUSIONS: We optimized all components of ADC design (i.e., leukemia antigen, antibody, and linker-payload) to develop an ADC that has the potential to translate into an effective new therapy against AML.


Subject(s)
Gemtuzumab/therapeutic use , Immunoconjugates/therapeutic use , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/therapeutic use , Area Under Curve , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Gemtuzumab/immunology , Gemtuzumab/pharmacokinetics , HL-60 Cells , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Macaca fascicularis , Mice , Sialic Acid Binding Ig-like Lectin 3/immunology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
5.
Mol Cancer Ther ; 19(10): 2068-2078, 2020 10.
Article in English | MEDLINE | ID: mdl-32747418

ABSTRACT

The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.


Subject(s)
Breast Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Animals , Breast Neoplasms/pathology , Female , Humans , Immunoconjugates/pharmacology , Lung Neoplasms/pathology , Mice , Mice, Nude , Stomach Neoplasms/pathology
6.
Clin Cancer Res ; 26(9): 2188-2202, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31996389

ABSTRACT

PURPOSE: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy. EXPERIMENTAL DESIGN: PF-07062119 activity was evaluated in vitro in multiple tumor cell lines, and in vivo in established subcutaneous and orthotopic human colorectal cancer xenograft tumors with adoptive transfer of human T cells. Efficacy was also evaluated in mouse syngeneic tumors using human CD3ε transgenic mice. IHC and mass cytometry were performed to demonstrate drug biodistribution, recruitment of activated T cells, and to identify markers of immune evasion. Combination studies were performed with anti-PD-1/PD-L1 and anti-VEGF antibodies. Toxicity and pharmacokinetic studies were done in cynomolgus macaque. RESULTS: We demonstrate that GUCY2C-positive tumors can be targeted with an anti-GUCY2C/anti-CD3ε bispecific, with selective drug biodistribution to tumors. PF-07062119 showed potent T-cell-mediated in vitro activity and in vivo efficacy in multiple colorectal cancer human xenograft tumor models, including KRAS- and BRAF-mutant tumors, as well as in the immunocompetent mouse syngeneic tumor model. PF-07062119 activity was further enhanced when combined with anti-PD-1/PD-L1 treatment or in combination with antiangiogenic therapy. Toxicity studies in cynomolgus indicated a monitorable and manageable toxicity profile. CONCLUSIONS: These data highlight the potential for PF-07062119 to demonstrate efficacy and improve patient outcomes in colorectal cancer and other gastrointestinal malignancies.


Subject(s)
Antibodies, Bispecific/administration & dosage , CD3 Complex/immunology , Colorectal Neoplasms/therapy , Gastrointestinal Neoplasms/therapy , Immunotherapy/methods , Receptors, Enterotoxin/immunology , T-Lymphocytes/immunology , Adoptive Transfer/methods , Animals , Antibodies, Bispecific/pharmacokinetics , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Tissue Distribution
7.
Mucosal Immunol ; 12(5): 1174-1186, 2019 09.
Article in English | MEDLINE | ID: mdl-31308480

ABSTRACT

There continues to be a major need for more effective inflammatory bowel disease (IBD) therapies. IL-13Rα2 is a decoy receptor that binds the cytokine IL-13 with high affinity and diminishes its STAT6-mediated effector functions. Previously, we found that IL-13Rα2 was necessary for IBD in mice deficient in the anti-inflammatory cytokine IL-10. Here, we tested for the first time a therapeutic antibody specifically targeting IL-13Rα2. We also used the antibody and Il13ra2-/- mice to dissect the role of IL-13Rα2 in IBD pathogenesis and recovery. Il13ra2-/- mice were modestly protected from induction of dextran sodium sulfate (DSS)-induced colitis. Following a 7-day recovery period, Il13ra2-/- mice or wild-type mice administered the IL-13Rα2-neutralizing antibody had significantly improved colon health compared to control mice. Neutralizing IL-13Rα2 to increase IL-13 bioavailability promoted resolution of IBD even if neutralization occurred only during recovery. To link our observations in mice to a large human cohort, we conducted a phenome-wide association study of a more active variant of IL-13 (R130Q) that has reduced affinity for IL-13Rα2. Human subjects carrying R130Q reported a lower risk for Crohn's disease. Our findings endorse moving anti-IL-13Rα2 into preclinical drug development with the goal of accelerating recovery and maintaining remission in Crohn's disease patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Inflammatory Bowel Diseases/metabolism , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Interleukin-13 Receptor alpha2 Subunit/metabolism , Animals , Crohn Disease/etiology , Crohn Disease/metabolism , Crohn Disease/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Disease Susceptibility , Eosinophils/immunology , Eosinophils/metabolism , Gain of Function Mutation , Genetic Variation , Humans , Immunity , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/pathology , Interleukin-13 Receptor alpha2 Subunit/genetics , Mice , Odds Ratio
8.
MAbs ; 10(1): 81-94, 2018 01.
Article in English | MEDLINE | ID: mdl-28991504

ABSTRACT

A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1-5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1-3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Complementarity Determining Regions/metabolism , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , Binding Sites, Antibody , CHO Cells , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Cricetulus , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Mice, Transgenic , Mutation , Pharmacogenomic Variants , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Fc/genetics , Receptors, Fc/immunology
9.
Cancer Immunol Immunother ; 67(2): 247-259, 2018 02.
Article in English | MEDLINE | ID: mdl-29067496

ABSTRACT

Strong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors. However, this approach has not been validated in solid tumors. PF-06671008 is a dual-affinity retargeting (DART®)-bispecific protein engineered with enhanced pharmacokinetic properties to extend in vivo half-life, and designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex in the presence of solid tumors expressing P-cadherin. This bispecific molecule elicited potent P-cadherin expression-dependent cytotoxic T cell activity across a range of tumor indications in vitro, and in vivo in tumor-bearing mice. Regression of established tumors in vivo was observed in both cell line and patient-derived xenograft models engrafted with circulating human T lymphocytes. Measurement of in vivo pharmacodynamic markers demonstrates PF-06671008-mediated T cell activation, infiltration and killing as the mechanism of tumor inhibition.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Cadherins/immunology , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , CD3 Complex/immunology , Cell Line, Tumor , Cricetinae , Cricetulus , Female , HCT116 Cells , HT29 Cells , Humans , Mice , Xenograft Model Antitumor Assays
10.
AAPS J ; 19(4): 1123-1135, 2017 07.
Article in English | MEDLINE | ID: mdl-28439809

ABSTRACT

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build "design rules" that will enable more efficient prosecution of next-generation ADC discovery programs.


Subject(s)
Cysteine/chemistry , Immunoconjugates/chemistry , Amino Acid Sequence , Molecular Dynamics Simulation
11.
J Biotechnol ; 248: 48-58, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28300660

ABSTRACT

Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems.


Subject(s)
Antibodies , Cysteine , Protein Engineering/methods , Recombinant Proteins , Animals , Antibodies/chemistry , Antibodies/isolation & purification , Antibodies/metabolism , CHO Cells , Cricetinae , Cricetulus , Cysteine/chemistry , Cysteine/metabolism , Dinitrobenzenes , HEK293 Cells , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
12.
ACS Med Chem Lett ; 7(11): 977-982, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27882194

ABSTRACT

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays. Second, site-specific conjugation was employed in order to design ADCs with reduced metabolic liabilities. Using the later approach, we were able to identify a conjugate at the 334C position of the heavy chain that resulted in an ADC with considerably reduced metabolism and improved efficacy. The examples discussed herein provide one of the clearest demonstrations to-date that site of conjugation can play a critical role in addressing metabolic and PK liabilities of an ADC. Moreover, a clear correlation was identified between the hydrophobicity of an ADC and its susceptibility to metabolic enzymes. Importantly, this study demonstrates that traditional medicinal chemistry strategies can be effectively applied to ADC programs.

13.
MAbs ; 8(7): 1302-1318, 2016 10.
Article in English | MEDLINE | ID: mdl-27625211

ABSTRACT

Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.


Subject(s)
Antibodies, Monoclonal/chemistry , Complementarity Determining Regions/chemistry , Myostatin/immunology , Protein Engineering/methods , Animals , Antibodies, Monoclonal/immunology , Complementarity Determining Regions/immunology , Humans , Mice , Models, Molecular
14.
Antibodies (Basel) ; 5(1)2016 Mar 04.
Article in English | MEDLINE | ID: mdl-31557987

ABSTRACT

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.

15.
Proc Natl Acad Sci U S A ; 112(50): 15354-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621728

ABSTRACT

Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Complementarity Determining Regions/immunology , Germ Cells/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibody Specificity/immunology , Clone Cells , Complementarity Determining Regions/chemistry , Computer Simulation , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/immunology , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Peptide Library , Protein Stability , Protein Structure, Tertiary , Rats , Sequence Alignment , Sequence Analysis, Protein , tau Proteins/chemistry , tau Proteins/immunology
16.
Mol Cancer Ther ; 14(8): 1868-76, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26089370

ABSTRACT

Antibody-drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels. TM4SF1 is internalized upon interaction with antibodies. We hypothesized that an ADC against TM4SF1 would inhibit cancer growth directly by killing cancer cells and indirectly by attacking the tumor vasculature. We generated a humanized anti-human TM4SF1 monoclonal antibody, v1.10, and armed it with an auristatin cytotoxic agent LP2 (chemical name mc-3377). v1.10-LP2 selectively killed cultured human tumor cell lines and human endothelial cells that express TM4SF1. Acting as a single agent, v1.10-LP2 induced complete regression of several TM4SF1-expressing tumor xenografts in nude mice, including non-small cell lung cancer and pancreas, prostate, and colon cancers. As v1.10 did not react with mouse TM4SF1, it could not target the mouse tumor vasculature. Therefore, we generated a surrogate anti-mouse TM4SF1 antibody, 2A7A, and conjugated it to LP2. At 3 mpk, 2A7A-LP2 regressed several tumor xenografts without noticeable toxicity. Combination therapy with v1.10-LP2 and 2A7A-LP2 together was more effective than either ADC alone. These data provide proof-of-concept that TM4SF1-targeting ADCs have potential as anticancer agents with dual action against tumor cells and the tumor vasculature. Such agents could offer exceptional therapeutic value and warrant further investigation. Mol Cancer Ther; 14(8); 1868-76. ©2015 AACR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Angiogenesis Inhibitors/toxicity , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression , Humans , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Rabbits , Tissue Distribution , Xenograft Model Antitumor Assays
17.
Immunology ; 143(3): 416-27, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24831554

ABSTRACT

Interleukin-4 (IL-4) and IL-13 are critical drivers of immune activation and inflammation in ulcerative colitis, asthma and other diseases. Because these cytokines may have redundant function, dual targeting holds promise for achieving greater efficacy. We have recently described a bifunctional therapeutic targeting IL-4 and IL-13 developed on a novel protein scaffold, generated by combining specific binding domains in an optimal configuration using appropriate linker regions. In the current study, the bifunctional IL-4/IL-13 antagonist was evaluated in the murine oxazolone-induced colitis model, which produces disease with features of ulcerative colitis. The bifunctional IL-4/IL-13 antagonist reduced body weight loss throughout the 7-day course of the model, and ameliorated the increased colon weight and decreased colon length that accompany disease. Colon tissue gene expression was modulated in accordance with the treatment effect. Concentrations of serum amyloid P were elevated in proportion to disease severity, making it an effective biomarker. Serum concentrations of the bifunctional IL-4/IL-13 antagonist were inversely proportional to disease severity, colon tissue expression of pro-inflammatory genes, and serum amyloid P concentration. Taken together, these results define a panel of biomarkers signifying engagement of the IL-4/IL-13 pathway, confirm the T helper type 2 nature of disease in this model, and demonstrate the effectiveness of dual cytokine blockade.


Subject(s)
Antibodies, Monoclonal/pharmacology , Colitis, Ulcerative/metabolism , Interleukin-13/antagonists & inhibitors , Interleukin-4/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Mice , Oxazolone/adverse effects , Recombinant Fusion Proteins/administration & dosage , Serum Amyloid A Protein/metabolism , Serum Amyloid P-Component/metabolism , Severity of Illness Index
18.
Proc Natl Acad Sci U S A ; 111(5): 1766-71, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24443552

ABSTRACT

Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues. The advantages of the oxime-bonded, site-specific NDCs were even more apparent when low-antigen-expressing (2+) target cell lines were used in the comparative studies. NDCs generated with protease-cleavable linkers demonstrated that the site of conjugation had a significant impact on the stability of these rationally designed prodrug linkers. In a single-dose rat toxicology study, a site-specific anti-Her2 NDC was well tolerated at dose levels up to 90 mg/kg. These experiments support the notion that chemically defined antibody conjugates can be synthesized in commercially relevant yields and can lead to antibody drug conjugates with improved properties relative to the heterogeneous conjugates formed by nonspecific chemical modification.


Subject(s)
Antibodies/metabolism , Immunoconjugates/metabolism , Pharmaceutical Preparations/chemical synthesis , Protein Engineering/methods , Animals , Antibodies/blood , Antibodies/chemistry , Antibodies/toxicity , Batch Cell Culture Techniques , CHO Cells , Cell Death/drug effects , Cell Line , Cricetinae , Cricetulus , Cysteine/metabolism , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/toxicity , Pharmaceutical Preparations/blood , Pharmaceutical Preparations/chemistry , Protein Stability/drug effects , Rats
19.
J Biol Chem ; 288(24): 17408-19, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23632026

ABSTRACT

The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Sharks/immunology , Single-Chain Antibodies/chemistry , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Fish Proteins , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Engineering , Protein Structure, Quaternary , Protein Structure, Secondary , Rats , Sequence Homology, Amino Acid , Serum Albumin/chemistry
20.
Am J Respir Cell Mol Biol ; 49(1): 37-46, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23449738

ABSTRACT

IL-4 and IL-13 comprise promising targets for therapeutic interventions in asthma and other Th2-associated diseases, but agents targeting either IL-4 or IL-13 alone have shown limited efficacy in human clinical studies. Because these cytokines may involve redundant function, dual targeting holds promise for achieving greater efficacy. We describe a bifunctional therapeutic targeting IL-4 and IL-13, developed by a combination of specific binding domains. IL-4-targeted and IL-13-targeted single chain variable fragments were joined in an optimal configuration, using appropriate linker regions on a novel protein scaffold. The bifunctional IL-4/IL-13 antagonist displayed high affinity for both cytokines. It was a potent and efficient neutralizer of both murine IL-4 and murine IL-13 bioactivity in cytokine-responsive Ba/F3 cells, and exhibited a half-life of approximately 4.7 days in mice. In a murine model of ovalbumin-induced ear swelling, the bifunctional molecule blocked both the IL-4/IL-13-dependent early-phase response and the IL-4-dependent late-phase response. In the ovalbumin-induced lung inflammation model, the bifunctional IL-4/IL-13 antagonist reduced the IL-4-dependent rise in serum IgE titers, and reduced IL-13-dependent airway hyperresponsiveness, lung inflammation, mucin gene expression, and serum chitinase responses. Taken together, these findings demonstrate the effective dual blockade of IL-4 and IL-13 with a single agent, which resulted in the modulation of a more extensive range of endpoints than could be achieved by targeting either cytokine alone.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Immunoglobulin E/immunology , Interleukin-13/antagonists & inhibitors , Interleukin-4/antagonists & inhibitors , Pneumonia/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/immunology , Binding Sites , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , CHO Cells , Cricetinae , Cross-Linking Reagents/chemistry , Ear/physiopathology , Female , Half-Life , Interleukin-13 Receptor alpha2 Subunit/immunology , Interleukin-13 Receptor alpha2 Subunit/metabolism , Mice , Mice, Inbred C57BL , Molecular Conformation , Neutralization Tests , Ovalbumin/adverse effects , Ovalbumin/immunology , Pneumonia/immunology , Protein Binding , Protein Interaction Domains and Motifs , Single-Chain Antibodies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...