Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Gen Intern Med ; 38(16): 3472-3481, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37715096

ABSTRACT

BACKGROUND: Limited research has studied the influence of social determinants of health (SDoH) on the receipt, disease risk, and subsequent effectiveness of neutralizing monoclonal antibodies (nMAbs) for outpatient treatment of COVID-19. OBJECTIVE: To examine the influence of SDoH variables on receiving nMAb treatments and the risk of a poor COVID-19 outcome, as well as nMAb treatment effectiveness across SDoH subgroups. DESIGN: Retrospective observational study utilizing electronic health record data from four health systems. SDoH variables analyzed included race, ethnicity, insurance, marital status, Area Deprivation Index, and population density. PARTICIPANTS: COVID-19 patients who met at least one emergency use authorization criterion for nMAb treatment. MAIN MEASURE: We used binary logistic regression to examine the influence of SDoH variables on receiving nMAb treatments and risk of a poor outcome from COVID-19 and marginal structural models to study treatment effectiveness. RESULTS: The study population included 25,241 (15.1%) nMAb-treated and 141,942 (84.9%) non-treated patients. Black or African American patients were less likely to receive treatment than white non-Hispanic patients (adjusted odds ratio (OR) = 0.86; 95% CI = 0.82-0.91). Patients who were on Medicaid, divorced or widowed, living in rural areas, or living in areas with the highest Area Deprivation Index (most vulnerable) had lower odds of receiving nMAb treatment, but a higher risk of a poor outcome. For example, compared to patients on private insurance, Medicaid patients had 0.89 (95% CI = 0.84-0.93) times the odds of receiving nMAb treatment, but 1.18 (95% CI = 1.13-1.24) times the odds of a poor COVID-19 outcome. Age, comorbidities, and COVID-19 vaccination status had a stronger influence on risk of a poor outcome than SDoH variables. nMAb treatment benefited all SDoH subgroups with lower rates of 14-day hospitalization and 30-day mortality. CONCLUSION: Disparities existed in receiving nMAbs within SDoH subgroups despite the benefit of treatment across subgroups.


Subject(s)
COVID-19 Vaccines , COVID-19 , United States/epidemiology , Humans , Outpatients , Social Determinants of Health , COVID-19/epidemiology , COVID-19/therapy , Antibodies, Monoclonal
2.
Cell Rep ; 31(2): 107502, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294438

ABSTRACT

The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC), which is the most lethal gynecologic malignancy, is not well understood. Here, we perform comprehensive multi-platform omics analyses, including integrated analysis, and immune monitoring on primary and metastatic sites from highly clinically annotated HGSC samples based on a laparoscopic triage algorithm from patients who underwent complete gross resection (R0) or received neoadjuvant chemotherapy (NACT) with excellent or poor response. We identify significant distinct molecular abnormalities and cellular changes and immune cell repertoire alterations between the groups, including a higher rate of NF1 copy number loss, and reduced chromothripsis-like patterns, higher levels of strong-binding neoantigens, and a higher number of infiltrated T cells in the R0 versus the NACT groups.


Subject(s)
Cystadenocarcinoma, Serous/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Adult , Female , Gene Expression Profiling/methods , Genomics/methods , Humans , Metabolomics/methods , Middle Aged , Ovarian Neoplasms/genetics
3.
Toxicol In Vitro ; 48: 244-254, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29391264

ABSTRACT

Endosulfan was once the most commonly used pesticide in agriculture and horticulture. It is an environmentally persistent organochlorine compound with the potential to bioaccumulate as it progresses through the food chain. Its acute and chronic toxicity to mammals, including humans, is well known, but the molecular mechanisms of its toxicity are not fully understood. To gain insight to these mechanisms, we examined genome-wide gene expression changes of rat liver, heart, and kidney cells induced by endosulfan exposure. We found that among the cell types examined, kidney and liver cells were the most sensitive and most resilient, respectively, to endosulfan insult. We acquired RNA sequencing information from cells exposed to endosulfan to identify differentially expressed genes, which we further examined to determine the cellular pathways that were affected. In kidney cells, exposure to endosulfan was uniquely associated with altered expression levels of genes constituting the hypoxia-inducible factor-1 (HIF-1) signaling pathway. In heart and liver cells, exposure to endosulfan altered the expression levels of genes for many members of the extracellular matrix (ECM)-receptor interaction pathway. Because both HIF-1 signaling and ECM-receptor interaction pathways directly or indirectly control cell growth, differentiation, proliferation, and apoptosis, our findings suggest that dysregulation of these pathways is responsible for endosulfan-induced cell death.


Subject(s)
Endosulfan/toxicity , Gene Expression/drug effects , Hepatocytes/drug effects , Insecticides/toxicity , Kidney/cytology , Kidney/drug effects , Myocytes, Cardiac/drug effects , Animals , Cell Line , Extracellular Matrix/drug effects , Genome-Wide Association Study , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Primary Cell Culture , Rats , Signal Transduction/drug effects
4.
J Appl Toxicol ; 36(9): 1137-49, 2016 09.
Article in English | MEDLINE | ID: mdl-26725466

ABSTRACT

Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.


Subject(s)
Gene Regulatory Networks , Kidney/drug effects , Liver/drug effects , Xenobiotics/toxicity , Animals , Biomarkers/metabolism , Databases, Factual , Dose-Response Relationship, Drug , Endpoint Determination , Gene Expression Profiling , Gene Expression Regulation , Genomics , Kidney/metabolism , Liver/metabolism , Male , Models, Biological , Principal Component Analysis , Rats , Rats, Sprague-Dawley , Toxicogenetics
5.
Brain Res ; 1618: 136-48, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26049129

ABSTRACT

Exposure to organophosphate (OP) nerve agents, such as sarin, may lead to uncontrolled seizures and irreversible brain injury and neuropathology. In rat studies, a median lethal dose of sarin leads to approximately half of the animals developing seizures. Whereas previous studies analyzed transcriptomic effects associated with seizing sarin-exposed rats, our study focused on the cohort of sarin-exposed rats that did not develop seizures. We analyzed the genomic changes occurring in sarin-exposed, non-seizing rats and compared differentially expressed genes and pathway activation to those of seizing rats. At the earliest time point (0.25 h) and in multiple sarin-sensitive brain regions, defense response genes were commonly expressed in both groups of animals as compared to the control groups. All sarin-exposed animals activated the MAPK signaling pathway, but only the seizing rats activated the apoptotic-associated JNK and p38 MAPK signaling sub-pathway. A unique phenotype of the non-seizing rats was the altered expression levels of genes that generally suppress inflammation or apoptosis. Importantly, the early transcriptional response for inflammation- and apoptosis-related genes in the thalamus showed opposite trends, with significantly down-regulated genes being up-regulated, and vice versa, between the seizing and non-seizing rats. These observations lend support to the hypothesis that regulation of anti-inflammatory genes might be part of an active and sufficient response in the non-seizing group to protect against the onset of seizures. As such, stimulating or activating these responses via pretreatment strategies could boost resilience against nerve agent exposures.


Subject(s)
Brain/drug effects , Brain/metabolism , Cholinesterase Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Sarin/pharmacology , Transcription, Genetic/drug effects , Animals , Rats , Signal Transduction/drug effects , Time Factors
6.
J Chem Phys ; 142(6): 064501, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25681917

ABSTRACT

The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

7.
Biochemistry ; 53(23): 3817-29, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24884163

ABSTRACT

Proteomics techniques have revealed that lysine acetylation is abundant in mitochondrial proteins. This study was undertaken (1) to determine the relationship between mitochondrial protein acetylation and insulin sensitivity in human skeletal muscle, identifying key acetylated proteins, and (2) to use molecular modeling techniques to understand the functional consequences of acetylation of adenine nucleotide translocase 1 (ANT1), which we found to be abundantly acetylated. Eight lean and eight obese nondiabetic subjects had euglycemic clamps and muscle biopsies for isolation of mitochondrial proteins and proteomics analysis. A number of acetylated mitochondrial proteins were identified in muscle biopsies. Overall, acetylation of mitochondrial proteins was correlated with insulin action (r = 0.60; P < 0.05). Of the acetylated proteins, ANT1, which catalyzes ADP-ATP exchange across the inner mitochondrial membrane, was acetylated at lysines 10, 23, and 92. The extent of acetylation of lysine 23 decreased following exercise, depending on insulin sensitivity. Molecular dynamics modeling and ensemble docking simulations predicted the ADP binding site of ANT1 to be a pocket of positively charged residues, including lysine 23. Calculated ADP-ANT1 binding affinities were physiologically relevant and predicted substantial reductions in affinity upon acetylation of lysine 23. Insertion of these derived binding affinities as parameters into a complete mathematical description of ANT1 kinetics predicted marked reductions in adenine nucleotide flux resulting from acetylation of lysine 23. Therefore, acetylation of ANT1 could have dramatic physiological effects on ADP-ATP exchange. Dysregulation of acetylation of mitochondrial proteins such as ANT1 therefore could be related to changes in mitochondrial function that are associated with insulin resistance.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Adenosine Diphosphate/metabolism , Insulin Resistance , Mitochondria, Muscle/enzymology , Muscle, Skeletal/enzymology , Oxidative Phosphorylation , Protein Processing, Post-Translational , Acetylation , Adenine Nucleotide Translocator 1/chemistry , Adenosine Diphosphate/chemistry , Adult , Binding Sites , Body Mass Index , Down-Regulation , Female , Humans , Lysine/chemistry , Lysine/metabolism , Male , Middle Aged , Mitochondria, Muscle/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Motor Activity , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Obesity/enzymology , Obesity/metabolism
8.
J Biol Chem ; 287(47): 39316-26, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23007398

ABSTRACT

The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses a low affinity allosteric site for antidepressants. Binding to the allosteric site impedes dissociation of antidepressants from the high affinity site, which may enhance antidepressant efficacy. Here we employ an induced fit docking/molecular dynamics protocol to identify the residues that may be involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory effects of Zn(2+) binding in an engineered site and the covalent attachment of benzocaine-methanethiosulfonate to a cysteine introduced in the extracellular vestibule. The data provide a mechanistic explanation for the allosteric action of antidepressants at SERT and suggest that the role of the vestibule is evolutionarily conserved among neurotransmitter:sodium symporter proteins as a binding pocket for small molecule ligands.


Subject(s)
Antidepressive Agents, Second-Generation/chemistry , Citalopram/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis , Serotonin Plasma Membrane Transport Proteins/chemistry , Allosteric Site , Humans , Protein Structure, Tertiary , Serotonin Plasma Membrane Transport Proteins/metabolism , Zinc/chemistry , Zinc/metabolism
9.
J Comput Aided Mol Des ; 26(7): 835-45, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22576240

ABSTRACT

Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and unbound forms. These simulations suggested that a combination of the α-helical propensity of the unbound peptide and specific interactions between the peptide and the receptor extracellular domain contribute to their higher binding affinities.


Subject(s)
Amino Acids/chemistry , Hormones/chemistry , Peptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Amino Acid Sequence , Molecular Dynamics Simulation , Molecular Sequence Data , Receptors, G-Protein-Coupled/antagonists & inhibitors , Sequence Homology, Amino Acid
10.
Biochemistry ; 50(38): 8181-92, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21851058

ABSTRACT

The natural ligands for family B G protein-coupled receptors are moderate-length linear peptides having diffuse pharmacophores. The amino-terminal regions of these ligands are critical for biological activity, with their amino-terminal truncation leading to production of orthosteric antagonists. The carboxyl-terminal regions of these peptides are thought to occupy a ligand-binding cleft within the disulfide-bonded amino-terminal domains of these receptors, with the peptides in amphipathic helical conformations. In this work, we have characterized the binding and activity of a series of 11 truncated and lactam-constrained secretin(5-27) analogues at the prototypic member of this family, the secretin receptor. One peptide in this series with lactam connecting residues 16 and 20 [c[E(16),K(20)][Y(10)]sec(5-27)] improved the binding affinity of its unconstrained parental peptide 22-fold while retaining the absence of endogenous biological activity and competitive antagonist characteristics. Homology modeling with molecular mechanics and molecular dynamics simulations established that this constrained peptide occupies the ligand-binding cleft in an orientation similar to that of natural full-length secretin and provided insights into why this peptide was more effective than other truncated conformationally constrained peptides in the series. This lactam bridge is believed to stabilize an extended α-helical conformation of this peptide while in solution and not to interfere with critical residue-residue approximations while docked to the receptor.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Secretin/chemistry , Secretin/metabolism , Amino Acid Sequence , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Lactams/chemistry , Ligands , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Multiprotein Complexes , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Peptides/pharmacology , Protein Conformation , Protein Stability , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Secretin/analogs & derivatives , Secretin/genetics
11.
Biochemistry ; 50(14): 2983-93, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21388146

ABSTRACT

Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity. The residues most critical for receptor binding were His1, Asp3, Gly4, Phe6, Thr7, Ser8, Leu10, Asp15, Leu19, and Leu23. The residues most critical for biological activity included His1, Gly4, Thr7, Ser8, Glu9, Leu10, Leu19, Leu22, and Leu23, with Asp3, Phe6, Ser11, Leu13, Asp15, Leu26, and Val27 also contributing. While the importance of residues in positions analogous to His1, Asp3, Phe6, Thr7, and Leu23 is conserved for several closely related members of this family, Leu19 is uniquely important for secretin. We, therefore, have further studied this residue by molecular modeling and molecular dynamics simulations. Indeed, the molecular dynamics simulations showed that mutation of Leu19 to alanine was destabilizing, with this effect greater than that observed for the analogous position in the other close family members. This could reflect reduced contact with the receptor or an increase in the solvent-accessible surface area of the hydrophobic residues in the carboxyl terminus of secretin as bound to its receptor.


Subject(s)
Amino Acids/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , Alanine/chemistry , Alanine/genetics , Alanine/metabolism , Amino Acid Substitution , Amino Acids/chemistry , Amino Acids/genetics , Animals , Binding, Competitive , CHO Cells , Computer Simulation , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Iodine Radioisotopes , Leucine/chemistry , Leucine/genetics , Leucine/metabolism , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutant Proteins/pharmacology , Protein Structure, Secondary , Protein Structure, Tertiary , Radioligand Assay , Rats , Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/chemistry , Secretin/chemistry , Secretin/genetics , Thermodynamics
12.
Chem Phys Lett ; 499(4-6): 219-225, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21072252

ABSTRACT

The effects of water multipole moments on the aqueous solvation of ions were determined in Monte Carlo simulations using soft-sticky dipole-quadrupole-octupole (SSDQO) water. Water molecules formed linear hydrogen bonds to Cl(-) using the new SSDQO1 parameters, similar to multi-site models. However, the dipole vector was tilted rather than parallel to the oxygen-Na(+) internuclear vector as in most multi-site model, while experiment and ab initio molecular dynamics simulations generally indicate a range of values between tilted and parallel. By varying the multipoles in SSDQO, the octupole was found to determine the orientation around Na(+). Moreover, analysis of the multipoles of more conventional models is predictive of their performance as solvents.

13.
Chem Phys Lett ; 491(4-6): 218-223, 2010 May 17.
Article in English | MEDLINE | ID: mdl-21072255

ABSTRACT

Water structure around sugars modeled by partial charges is compared for soft-sticky dipole-quadrupole-octupole (SSDQO), a fast single-site multipole model, and commonly used multi-site models in Monte Carlo simulations. Radial distribution functions and coordination numbers of all the models indicate similar hydration by hydrogen-bond donor and acceptor waters. However, the new optimized SSDQO1 parameters as well as TIP4P-Ew and TIP5P predict a "lone-pair" orientation for the water accepting the sugar hydroxyl hydrogen bond that is more consistent with the limited experimental data than the "dipole" orientation in SPC/E, which has important implications for studies of the cryoprotectant properties of sugars.

14.
Chem Phys Lett ; 486(1-3): 70-73, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-21031143

ABSTRACT

The soft sticky dipole-quadrupole-octupole (SSDQO) potential energy function represents a water molecule by a single site with a van der Waals sphere and point multipoles. Previously, SSDQO was shown to give good properties for liquid water and solvation of simple ions and is faster than three point models. Here, SSDQO is assessed for solvating biologically relevant molecules having a multi-site, partial charge description. Monte Carlo simulations of ethanol, benzene, and N-methylacetamide in SSDQO with SPC/E moments showed the water structure was as good as in SPC/E. Thus, SSDQO is potentially useful for simulations of biological macromolecules in aqueous solution.

15.
J Chem Phys ; 132(11): 114511, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331309

ABSTRACT

The soft-sticky dipole-quadrupole-octupole (SSDQO) potential energy function for a coarse-grained single-site water model has Lennard-Jones interactions and an approximate multipole expansion for the electrostatics. Here, the Lennard-Jones parameters and multipole moments of SSDQO were optimized so that the structural, thermodynamic, dynamic, and dielectric properties agreed with experimental values of liquid water at ambient conditions. Using these parameters, the temperature and pressure dependence of various properties were shown to be in good agreement with experiment, including a temperature of maximum density at approximately 260 K. This new parametrization, referred to as SSDQO1, is both computationally faster and generally more accurate over a wide range of conditions than traditional three-site water models, which demonstrates that a model with a single dipole, quadrupole, and octupole on each water molecule can reproduce the tetrahedral hydrogen bonded network of water.


Subject(s)
Models, Chemical , Temperature , Water/chemistry , Molecular Dynamics Simulation , Molecular Structure , Pressure , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...