Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38441268

ABSTRACT

Liquid crystals consisting of biaxial particles can exhibit a much richer phase behavior than their uniaxial counterparts. Usually, one has to rely on simulation results to understand the phase diagram of these systems since very few analytical results exist. In this work, we apply fundamental measure theory, which allows us to derive free energy functionals for hard particles from first principles and with high accuracy, to systems of hard cylinders, cones, and spherotriangles. We provide a general recipe for incorporating biaxial liquid crystal order parameters into fundamental measure theory and use this framework to obtain the phase boundaries for the emergence of orientational order in the considered systems. Our results provide insights into the phase behavior of biaxial nematic liquid crystals and, in particular, into methods for their analytical investigation.

2.
Soft Matter ; 20(1): 224-244, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38078539

ABSTRACT

The pair-distribution function, which provides information about correlations in a system of interacting particles, is one of the key objects of theoretical soft matter physics. In particular, it allows for microscopic insights into the phase behavior of active particles. While this function is by now well studied for two-dimensional active matter systems, the more complex and more realistic case of three-dimensional systems is not well understood by now. In this work, we analyze the full pair-distribution function of spherical active Brownian particles interacting via a Weeks-Chandler-Andersen potential in three spatial dimensions using Brownian dynamics simulations. Besides extracting the structure of the pair-distribution function from the simulations, we obtain an analytical representation for this function, parametrized by activity and concentration, which takes into account the symmetries of a homogeneous stationary state. Our results are useful as input to quantitative models of active Brownian particles and advance our understanding of the microstructure in dense active fluids.

3.
Phys Rev Lett ; 131(16): 168203, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925724

ABSTRACT

Applications of active particles require a method for controlling their dynamics. While this is typically achieved via direct interventions, indirect interventions based, e.g., on an orientation-dependent self-propulsion speed of the particles, become increasingly popular. In this Letter, we investigate systems of interacting active Brownian spheres in two spatial dimensions with orientation-dependent propulsion using analytical modeling and Brownian dynamics simulations. It is found that the orientation dependence leads to self-advection, circulating currents, and programmable cluster shapes.

4.
Phys Rev E ; 108(4-1): 044601, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978644

ABSTRACT

We investigate the influence of external forces on the collective dynamics of interacting active Brownian particles in two as well as three spatial dimensions. Via explicit coarse graining, we derive predictive models, i.e., models that give a direct relation between the models' coefficients and the bare parameters of the system, that are applicable for space- and time-dependent external force fields. We study these models for the cases of gravity and harmonic traps. In particular, we derive a generalized barometric formula for interacting active Brownian particles under gravity that is valid for low to high concentrations and activities of the particles. Furthermore, we show that one can use an external harmonic trap to induce motility-induced phase separation in systems that, without external fields, remain in a homogeneous state. This finding makes it possible to realize programmable density patterns in systems of active Brownian particles. Our analytic predictions are found to be in very good agreement with Brownian dynamics simulations.

5.
Nat Commun ; 14(1): 1302, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894573

ABSTRACT

Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.

6.
Entropy (Basel) ; 25(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832681

ABSTRACT

A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermodynamics of an empty box allows equations with the same structure as those of cosmology and classical and quantum mechanics to be derived. The simple model system of an empty box is shown to have interesting connections to classical mechanics, special relativity, and quantum field theory.

7.
J Phys Condens Matter ; 35(4)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-35917827

ABSTRACT

Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.

8.
Phys Chem Chem Phys ; 24(26): 15691-15704, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35552573

ABSTRACT

Observing and characterizing the complex ordering phenomena of liquid crystals subjected to external constraints constitutes an ongoing challenge for chemists and physicists alike. To elucidate the delicate balance appearing when the intrinsic positional order of smectic liquid crystals comes into play, we perform Monte-Carlo simulations of rod-like particles in a range of cavities with a cylindrical symmetry. Based on recent insights into the topology of smectic orientational grain boundaries in two dimensions, we analyze the emerging three-dimensional defect structures from the perspective of tetratic symmetry. Using an appropriate three-dimensional tetratic order parameter constructed from the Steinhardt order parameters, we show that those grain boundaries can be interpreted as a pair of tetratic disclination lines that are located on the edges of the nematic domain boundary. Thereby, we shed light on the fine structure of grain boundaries in three-dimensional confined smectics.

9.
Phys Rev Lett ; 127(23): 231101, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936793

ABSTRACT

Cosmology relies on a coarse-grained description of the universe, assumed to be valid on large length scales. However, the nonlinearity of general relativity makes coarse graining extremely difficult. We here address this problem by extending the Mori-Zwanzig projection operator formalism, a highly successful coarse-graining method from statistical mechanics, towards general relativity. Using the Buchert equations, we derive a new dynamic equation for the Hubble parameter which captures the effects of averaging through a memory function. This gives an empirical prediction for the cosmic jerk.

10.
Stud Hist Philos Sci ; 87: 136-146, 2021 06.
Article in English | MEDLINE | ID: mdl-34111817

ABSTRACT

Thermodynamics has a clear arrow of time, characterized by the irreversible approach to equilibrium. This stands in contrast to the laws of microscopic theories, which are invariant under time-reversal. Foundational discussions of this "problem of irreversibility" often focus on historical considerations, and do therefore not take results of modern physical research on this topic into account. In this article, I will close this gap by studying the implications of dynamical density functional theory (DDFT), a central method of modern nonequilibrium statistical mechanics not previously considered in philosophy of physics, for this debate. For this purpose, the philosophical discussion of irreversibility is structured into five problems, concerned with the source of irreversibility in thermodynamics, the definition of equilibrium and entropy, the justification of coarse-graining, the approach to equilibrium and the arrow of time. For each of these problems, it is shown that DDFT provides novel insights that are of importance for both physicists and philosophers of physics.

11.
Nat Commun ; 11(1): 5576, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149128

ABSTRACT

For preventing the spread of epidemics such as the coronavirus disease COVID-19, social distancing and the isolation of infected persons are crucial. However, existing reaction-diffusion equations for epidemic spreading are incapable of describing these effects. In this work, we present an extended model for disease spread based on combining a susceptible-infected-recovered model with a dynamical density functional theory where social distancing and isolation of infected persons are explicitly taken into account. We show that the model exhibits interesting transient phase separation associated with a reduction of the number of infections, and allows for new insights into the control of pandemics.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Density Functional Theory , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Psychological Distance , Social Isolation , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Humans , Models, Statistical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Spatio-Temporal Analysis
12.
Phys Rev E ; 99(6-1): 062118, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330634

ABSTRACT

The Mori-Zwanzig projection operator formalism is a powerful method for the derivation of mesoscopic and macroscopic theories based on known microscopic equations of motion. It has applications in a large number of areas including fluid mechanics, solid-state theory, spin relaxation theory, and particle physics. In its present form, however, the formalism cannot be directly applied to systems with time-dependent Hamiltonians. Such systems are relevant in many scenarios such as driven soft matter or nuclear magnetic resonance. In this article we derive a generalization of the present Mori-Zwanzig formalism that is able to treat also time-dependent Hamiltonians. The extended formalism can be applied to classical and quantum systems, close to and far from thermodynamic equilibrium, and even in the case of explicitly-time-dependent observables. Moreover, we develop a variety of approximation techniques that enhance the practical applicability of our formalism. Generalizations and approximations are developed for both equations of motion and correlation functions. Our formalism is demonstrated for the important case of spin relaxation in a time-dependent external magnetic field. The Bloch equations are derived together with microscopic expressions for the relaxation times.

SELECTION OF CITATIONS
SEARCH DETAIL
...