Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 932: 172954, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723956

ABSTRACT

Diversified cropping systems and fertilization strategies were proposed to enhance the abundance and diversity of the soil microbiome, thereby stabilizing their beneficial services for maintaining soil fertility and supporting plant growth. Here, we assessed across three different long-term field experiments in Europe (Netherlands, Belgium, Northern Germany) whether diversified cropping systems and fertilization strategies also affect their functional gene abundance. Soil DNA was analyzed by quantitative PCR for quantifying bacteria, archaea and fungi as well as functional genes related to nitrogen (N) transformations; including bacterial and archaeal nitrification (amoA-bac,arch), three steps of the denitrification process (nirK, nirS and nosZ-cladeI,II) and N2 assimilation (nifH), respectively. Crop diversification and fertilization strategies generally enhanced soil total carbon (C), N and microbial abundance, but with variation between sites. Overall effects of diversified cropping systems and fertilization strategies on functional genes were much stronger than on the abundance of bacteria, archaea and fungi. The legume-based cropping systems showed great potential not only in stimulating the growth of N-fixing microorganisms but also in boosting downstream functional potentials for N cycling. The sorghum-based intercropping system suppressed soil ammonia oxidizing prokaryotes. N fertilization reduced the abundance of nitrifiers and denitrifiers except for ammonia-oxidizing bacteria, while the application of the synthetic nitrification inhibitor DMPP combined with mineral N reduced growth of both ammonia-oxidizing bacteria and archaea. In conclusion, this study demonstrates a strong impact of diversified agricultural practices on the soil microbiome and their functional potentials mediating N transformations.


Subject(s)
Agriculture , Fertilizers , Nitrification , Nitrogen Cycle , Nitrogen , Soil Microbiology , Soil , Agriculture/methods , Soil/chemistry , Nitrogen/metabolism , Bacteria/metabolism , Archaea/physiology , Archaea/genetics , Microbiota , Belgium , Germany , Netherlands , Denitrification
2.
Appl Microbiol Biotechnol ; 108(1): 254, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446240

ABSTRACT

Timber wood is a building material with many positive properties. However, its susceptibility to microbial degradation is a major challenge for outdoor usage. Although many wood-degrading fungal species are known, knowledge on their prevalence and diversity causing damage to exterior structural timber is still limited. Here, we sampled 46 decaying pieces of wood from outdoor constructions in the area of Hamburg, Germany; extracted their DNA; and investigated their microbial community composition by PCR amplicon sequencing of the fungal ITS2 region and partial bacterial 16S rRNA genes. In order to establish a link between the microbial community structure and environmental factors, we analysed the influence of wood species, its C and N contents, the effect of wood-soil contact, and the importance of its immediate environment (city, forest, meadow, park, respectively). We found that fungal and bacterial community composition colonising exterior timber was similar to fungi commonly found in forest deadwood. Of all basidiomycetous sequences retrieved, some, indicative for Perenniporia meridionalis, Dacrymyces capitatus, and Dacrymyces stillatus, were more frequently associated with severe wood damage. Whilst the most important environmental factor shaping fungal and bacterial community composition was the wood species, the immediate environment was important for fungal species whilst, for the occurrence of bacterial taxa, soil contact had a high impact. No influence was tangible for variation of the C or N content. In conclusion, our study demonstrates that wood colonising fungal and bacterial communities are equally responsive in their composition to wood species, but respond differently to environmental factors. KEY POINTS: • Perenniporia meridionalis and Dacrymyces are frequently associated with wood damage • Fungal community composition on timber is affected by its surrounding environment • Bacterial community composition on structural timber is affected by soil contact.


Subject(s)
Microbiota , Mycobiome , Polyporaceae , RNA, Ribosomal, 16S/genetics , Wood , Soil
3.
Appl Microbiol Biotechnol ; 107(21): 6717-6730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672072

ABSTRACT

Ammonia (NH3) inhibition represents a major limitation to methane production during anaerobic digestion of organic material in biogas reactors. This process relies on co-operative metabolic interactions between diverse taxa at the community-scale. Despite this, most investigations have focused singularly on how methanogenic Archaea respond to NH3 stress. With a high-NH3 pre-adapted and un-adapted community, this study investigated responses to NH3 inhibition both at the community-scale and down to individual taxa. The pre-adapted community performed methanogenesis under inhibitory NH3 concentrations better than the un-adapted. While many functionally important phyla were shared between the two communities, only taxa from the pre-adapted community were robust to NH3. Functionally important phyla were mostly comprised of sensitive taxa (≥ 50%), yet all groups, including methanogens, also possessed tolerant individuals (10-50%) suggesting that potential mechanisms for tolerance are non-specific and widespread. Hidden Markov Model-based phylogenetic analysis of methanogens confirmed that NH3 tolerance was not restricted to specific taxonomic groups, even at the genus level. By reconstructing covarying growth patterns via network analyses, methanogenesis by the pre-adapted community was best explained by continued metabolic interactions (edges) between tolerant methanogens and other tolerant taxa (nodes). However, under non-inhibitory conditions, sensitive taxa re-emerged to dominate the pre-adapted community, suggesting that mechanisms of NH3 tolerance can be disadvantageous to fitness without selection pressure. This study demonstrates that methanogenesis under NH3 inhibition depends on broad-scale tolerance throughout the prokaryotic community. Mechanisms for tolerance seem widespread and non-specific, which has practical significance for the development of robust methanogenic biogas communities. KEY POINTS: • Ammonia pre-adaptation allows for better methanogenesis under inhibitory conditions. • All functionally important prokaryote phyla have some ammonia tolerant individuals. • Methanogenesis was likely dependent on interactions between tolerant individuals.

4.
Front Microbiol ; 13: 969784, 2022.
Article in English | MEDLINE | ID: mdl-36187971

ABSTRACT

The Black Queen hypothesis describes the evolutionary strategy to lose costly functions in favour of improving growth efficiency. This results in mutants (cheaters) becoming obligately dependent upon a provider (black queen) to produce a necessary resource. Previous analyses demonstrate black queens and cheaters reach a state of equilibrium in pair-wise systems. However, in complex communities, accumulation of cheaters likely poses a serious burden on shared resources. This should result in a Tragedy of the Commons (ToC), whereby over-utilisation of public resources risks making them growth-limiting. With a collection of differential equations, microbial communities composed of twenty prokaryote 'species' either from rhizosphere, characterised by abundant carbon and energy sources, or bulk soil, with limited carbon and energy supply, were simulated. Functional trait groups differed based on combinations of cellulase and amino acid production, growth and resource uptake. Randomly generated communities were thus composed of species that acted as cellulolytic prototrophic black queens, groups that were either cellulolytic or prototrophic, or non-cellulolytic auxotrophic cheaters. Groups could evolve to lose functions over time. Biomass production and biodiversity were tracked in 8,000 Monte Carlo simulations over 500 generations. Bulk soil favoured oligotrophic co-operative communities where biodiversity was positively associated with growth. Rhizosphere favoured copiotrophic cheaters. The most successful functional group across both environments was neither black queens nor cheaters, but those that balanced providing an essential growth-limiting function at a relatively low maintenance cost. Accumulation of loss of function mutants in bulk soil risked resulting in loss of cumulative growth by ToC, while cumulative growth increased in the rhizosphere. In the bulk soil, oligotrophic adaptations assisted species in avoiding extinction. This demonstrated that loss of function by mutation is a successful evolutionary strategy in host-associated and/or resource-rich environments, but poses a risk to communities that must co-operate with each other for mutual co-existence. It was concluded that microbial communities must follow different evolutionary and community assembly strategies in bulk soil versus rhizosphere, with bulk soil communities more dependent on traits that promote co-operative interactions between microbial species.

5.
Ecol Appl ; : e2741, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36103141

ABSTRACT

Plant invasions cause a fundamental change in soil organic matter (SOM) turnover. Disentangling the biogeographic patterns and key drivers of SOM decomposition and its temperature sensitivity (Q10 ) under plant invasion is a prerequisite for making projections of global carbon feedback. We collected soil samples along China's coast across saltmarshes to mangrove ecosystems invaded by the smooth cordgrass (Spartina alterniflora Loisel.). Microcosm experiments were carried out to determine the patterns of SOM decomposition and its thermal response. Soil microbial biomass and communities were also characterized accordingly. SOM decomposition constant dramatically decreased along the mean annual temperature gradient, whereas the cordgrass invasion retarded this change (significantly reduced slope, p < 0.05). The response of Q10 to invasion and the soil microbial quotient peaked at midlatitude saltmarshes, which can be explained by microbial metabolism strategies. Climatic variables showed strong negative controls on the Q10 , whereas dissolved carbon fraction exerted a positive influence on its spatial variance. Higher microbial diversity appeared to weaken the temperature-related response of SOM decomposition, with apparent benefits for carbon sequestration. Inconsistent responses to invasion were exhibited among habitat types, with SOM accumulation in saltmarshes but carbon loss in mangroves, which were explained, at least in part, by the SOM decomposition patterns under invasion. This study elucidates the geographic pattern of SOM decomposition and its temperature sensitivity in coastal ecosystems and underlines the importance of interactions between climate, soil, and microbiota for stabilizing SOM under plant invasion.

6.
FEMS Microbiol Lett ; 369(1)2022 09 14.
Article in English | MEDLINE | ID: mdl-35998308

ABSTRACT

Despite adoption of high-throughput sequencing of PCR-amplified microbial taxonomic markers for ecological analyses, distinct approaches for preparing amplicon libraries exist. One approach utilises long fusion primers and a single PCR (one-step) while another utilises shorter primers in a first reaction, before transferring diluted amplicons to a second reaction for barcode index incorporation (two-step). We investigated whether transferring diluted amplicons risked creating artificially simplified, poorly diverse communities. In soils from three sites with paired cropland and forest, one-step yielded higher alpha-diversity indices, including detection of two-four times more unique taxa. Modelling expected taxa per sequence observation predicted that one-step reaches full coverage by 104 sequences per sample while two-step needs 105-109. Comparisons of rank abundance demonstrated that two-step covered only 38%-69% of distributions. Beta-diversity showed better separation of communities in response to land use change under one-step, although both approaches showed a significant effect. Driving differences was underestimation of relatively minor taxa with the two-step procedure. These taxa were low in abundance, yet play important roles in carbon cycling, secondary metabolite production, anaerobic metabolism, and bacterial predation. We conclude that one-step amplicon libraries are advisable for studies focussed on diversity or relatively minor yet functionally important taxa.


Subject(s)
Soil Microbiology , Soil , DNA Primers , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics
7.
Mol Ecol ; 31(17): 4478-4494, 2022 09.
Article in English | MEDLINE | ID: mdl-35789059

ABSTRACT

Microbiologically driven ecosystem processes can be profoundly altered by alien plant invasions. There is limited understanding of the ecological mechanisms orchestrating different microbial constituents and their roles in emerging functional properties under plant invasions. Here, we investigated soil microbial communities and functions using high-throughput amplicon sequencing and GeoChip technology, respectively, along a chronological gradient of smooth cordgrass invasion in salt marshes located in the Yellow River Estuary, China. We found a positive correlation between microbial diversity and the duration age of invasion, and both bacterial and fungal communities showed consistent changes with invasion. Soil microbial metabolic potential, as indicated by the abundance of microbial functional genes involved in biogeochemical cycling, decreased in response to invasion. As a consequence, declining soil microbial metabolisms as a result of plant invasion facilitated carbon accumulation in invaded salt marshes. Bacteria and fungi exhibited distinct contributions to assembly processes along the invasion gradient: bacterial communities were mainly driven by selection and dispersal limitation, while fungi were dramatically shaped by stochastic processes. Soil microbial-mediated functions were taxon-specific, as indicated by community-function relationships. This study demonstrates the distinct contributions of microbial constituents to microbial community assembly and functions and sheds light on the implications of plant invasion on microbiologically driven ecosystem processes in coastal wetlands.


Subject(s)
Microbiota , Wetlands , Bacteria/genetics , China , Ecosystem , Introduced Species , Microbiota/genetics , Plants , Poaceae/genetics , Soil/chemistry , Soil Microbiology
8.
Annu Rev Phytopathol ; 60: 21-42, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35300520

ABSTRACT

The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.


Subject(s)
Biological Control Agents , Viruses , Animals , Bacteria , Ecosystem , Fungi , Insecta , Plant Diseases , Plants
9.
FEMS Microbiol Ecol ; 97(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-33960387

ABSTRACT

Functional, physiological traits are the underlying drivers of niche differentiation. A common framework related to niches occupied by terrestrial prokaryotes is based on copiotrophy or oligotrophy, where resource investment is primarily in either rapid growth or stress tolerance, respectively. A quantitative trait-based approach sought relationships between taxa, traits and niche in terrestrial prokaryotes. With 175 taxa from 11 Phyla and 35 Families (n = 5 per Family), traits were considered as discrete counts of shared genome-encoded proteins. Trait composition strongly supported non-random functional distributions as preferential clustering of related taxa via unweighted pair-group method with arithmetic mean. Trait similarity between taxa increased as taxonomic rank decreased. A suite of Random Forest models identified traits significantly enriched or depleted in taxonomic groups. These traits conveyed functions related to rapid growth, nutrient acquisition and stress tolerance consistent with their presence in copiotroph-oligotroph niches. Hierarchical clustering of traits identified a clade of competitive, copiotrophic Families resilient to oxidative stress versus glycosyltransferase-enriched oligotrophic Families resistant to antimicrobials and environmental stress. However, the formation of five clades suggested a more nuanced view to describe niche differentiation in terrestrial systems is necessary. We suggest considering traits involved in both resource investment and acquisition when predicting niche.


Subject(s)
Ecosystem , Humans , Phenotype
10.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Article in English | MEDLINE | ID: mdl-33784375

ABSTRACT

The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations. In this study, we revisited the Halen field and applied, in addition to enrichment-based isolation, DNA stable isotope probing (DNA-SIP), to identify in situ linuron-degrading bacteria in linuron-exposed soil microcosms. Linuron dissipation was unambiguously linked to Variovorax and its linuron catabolic genes and might involve the synergistic cooperation between two species. Additionally, two novel linuron-mineralizing Variovorax isolates were obtained with high 16S rRNA gene sequence similarity to strains isolated from the same field a decade earlier. The results confirm Variovorax as a prime in situ degrader of linuron in the studied agricultural field soil and corroborate the genus as key for maintaining the genetic memory of linuron degradation functionality in that field.


Subject(s)
Herbicides , Linuron , Belgium , Biodegradation, Environmental , DNA, Bacterial/genetics , Isotopes , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
11.
Environ Microbiol ; 23(2): 1020-1037, 2021 02.
Article in English | MEDLINE | ID: mdl-33073448

ABSTRACT

Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.


Subject(s)
Estuaries , Microbiota , Salinity , Soil Microbiology , Wetlands , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Carbon/metabolism , Nitrogen Cycle/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry
12.
Sci Total Environ ; 758: 143667, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33248759

ABSTRACT

Soil fungal communities drive diverse ecological processes and are critical in maintaining ecosystems' stability, but the effects of plant invasion on soil fungal diversity, community composition, and functional groups are not well understood. Here, we investigated soil fungal communities in a salt marsh ecosystem with both native (Suaeda salsa) and exotic (Spartina alterniflora) species in the Yellow River Delta. We characterized fungal diversity based on the PCR-amplified Internal Transcribed Spacer 2 (ITS2) DNA sequences from soil extracted total DNA. The plant invasion evidently decreased fungal richness and phylogenetic diversity and significantly altered the taxonomic community composition (indicated by the permutation test, P < 0.001). Co-occurrence networks between fungal species showed fewer network links but were more assembled because of the high modularity after the invasion. As indicated by the fungal Bray-Curtis and weighted UniFrac distances, the fungal community became homogenized with the invasion. FUNGuild database analyses revealed that the invaded sites had a higher proportion of saprophytic fungi, suggesting higher organic matter decomposition potential with the invasion. The plant invasion dramatically inhibited the growth of pathogenic fungi, which may facilitate the expansion of invasive plants in the intertidal habitats. Soil pH and salinity were identified as the most important edaphic factors in shaping the fungal community structures in the context of Spartina alterniflora invasion. Overall, this study elucidates the linkage between plant invasion and soil fungal communities and poses potential consequences for fungal contribution to ecosystem function, including the decomposition of soil organic substrates.


Subject(s)
Soil , Wetlands , Ecosystem , Fungi/genetics , Introduced Species , Phylogeny , Poaceae
13.
Microbiologyopen ; 10(1): e1144, 2021 01.
Article in English | MEDLINE | ID: mdl-33369241

ABSTRACT

Sequencing PCR-amplified gene fragments from metagenomic DNA is a widely applied method for studying the diversity and dynamics of soil microbial communities. Typically, DNA is extracted from 0.25 to 1 g of soil. These amounts, however, neglect the heterogeneity of soil present at the scale of soil aggregates and thus ignore a crucial scale for understanding the structure and functionality of soil microbial communities. Here, we show with a nitrogen-depleted agricultural soil the impact of reducing the amount of soil used for DNA extraction from 250 mg to approx. 1 mg to access spatial information on the prokaryotic community structure, as indicated by 16S rRNA gene amplicon analyses. Furthermore, we demonstrate that individual aggregates from the same soil differ in their prokaryotic community compositions. The analysis of 16S rRNA gene amplicon sequences from individual soil aggregates allowed us, in contrast to 250 mg soil samples, to construct a co-occurrence network that provides insight into the structure of microbial associations in the studied soil. Two dense clusters were apparent in the network, one dominated by Thaumarchaeota, known to be capable of ammonium oxidation at low N concentrations, and the other by Acidobacteria subgroup 6, representing an oligotrophic lifestyle to obtain energy from SOC. Overall this study demonstrates that DNA obtained from individual soil aggregates provides new insights into how microbial communities are assembled.


Subject(s)
Acidobacteria/genetics , Archaea/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Metagenome/genetics , Microbiota/genetics , Acidobacteria/classification , Archaea/classification , Base Sequence , Biodiversity , Fungi/classification , Fungi/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
14.
Microorganisms ; 8(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260993

ABSTRACT

Microorganisms can potentially colonise volcanic rocks using the chemical energy in reduced gases such as methane, hydrogen (H2) and carbon monoxide (CO). In this study, we analysed soil metagenomes from Chilean volcanic soils, representing three different successional stages with ages of 380, 269 and 63 years, respectively. A total of 19 metagenome-assembled genomes (MAGs) were retrieved from all stages with a higher number observed in the youngest soil (1640: 2 MAGs, 1751: 1 MAG, 1957: 16 MAGs). Genomic similarity indices showed that several MAGs had amino-acid identity (AAI) values >50% to the phyla Actinobacteria, Acidobacteria, Gemmatimonadetes, Proteobacteria and Chloroflexi. Three MAGs from the youngest site (1957) belonged to the class Ktedonobacteria (Chloroflexi). Complete cellular functions of all the MAGs were characterised, including carbon fixation, terpenoid backbone biosynthesis, formate oxidation and CO oxidation. All 19 environmental genomes contained at least one gene encoding a putative carbon monoxide dehydrogenase (CODH). Three MAGs had form I coxL operon (encoding the large subunit CO-dehydrogenase). One of these MAGs (MAG-1957-2.1, Ktedonobacterales) was highly abundant in the youngest soil. MAG-1957-2.1 also contained genes encoding a [NiFe]-hydrogenase and hyp genes encoding accessory enzymes and proteins. Little is known about the Ktedonobacterales through cultivated isolates, but some species can utilise H2 and CO for growth. Our results strongly suggest that the remote volcanic sites in Chile represent a natural habitat for Ktedonobacteria and they may use reduced gases for growth.

15.
Front Bioeng Biotechnol ; 8: 603145, 2020.
Article in English | MEDLINE | ID: mdl-33224940

ABSTRACT

DNA modification techniques are increasingly applied to improve the agronomic performance of crops worldwide. Before cultivation and marketing, the environmental risks of such modified varieties must be assessed. This includes an understanding of their effects on soil microorganisms and associated ecosystem services. This study analyzed the impact of a cisgenic modification of the potato variety Desirée to enhance resistance against the late blight-causing fungus Phytophthora infestans (Oomycetes) on the abundance and diversity of rhizosphere inhabiting microbial communities. Two experimental field sites in Ireland and the Netherlands were selected, and for 2 subsequent years, the cisgenic version of Desirée was compared in the presence and absence of fungicides to its non-engineered late blight-sensitive counterpart and a conventionally bred late blight-resistant variety. At the flowering stage, total DNA was extracted from the potato rhizosphere and subjected to PCR for quantifying and sequencing bacterial 16S rRNA genes, fungal internal transcribed spacer (ITS) sequences, and nir genes encoding for bacterial nitrite reductases. Both bacterial and fungal communities responded to field conditions, potato varieties, year of cultivation, and bacteria sporadically also to fungicide treatments. At the Dutch site, without annual replication, fungicides stimulated nirK abundance for all potatoes, but with significance only for cisgenic Desirée. In all other cases, neither the abundance nor the diversity of any microbial marker differed between both Desirée versions. Overall, the study demonstrates environmental variation but also similar patterns of soil microbial diversity in potato rhizospheres and indicates that the cisgenic modification had no tangible impact on soil microbial communities.

16.
Environ Sci Technol ; 54(15): 9387-9397, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32569463

ABSTRACT

Our understanding of the microorganisms involved in in situ biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems. We used DNA-stable isotope probing (DNA-SIP) and classical enrichment to be informed about the organisms responsible for in situ degradation of the phenylurea herbicide linuron in a BPS matrix. DNA-SIP identified Ramlibacter, Variovorax, and an unknown Comamonadaceae genus as the dominant linuron assimilators. While linuron-degrading Variovorax strains have been isolated repeatedly, Ramlibacter has never been associated before with linuron degradation. Genes and mobile genetic elements (MGEs) previously linked to linuron catabolism were enriched in the heavy DNA-SIP fractions, suggesting their involvement in in situ linuron assimilation. BPS material free cultivation of linuron degraders from the same BPS matrix resulted in a community dominated by Variovorax, while Ramlibacter was not observed. Our study provides evidence for the role of Variovorax in in situ linuron biodegradation in a BPS, alongside other organisms like Ramlibacter, and further shows that cultivation results in a biased representation of the in situ linuron-assimilating bacterial populations.


Subject(s)
Linuron , Microbiota , Biodegradation, Environmental , DNA, Bacterial/genetics , Farms , Isotopes , Microbiota/genetics , Soil Microbiology
17.
PLoS One ; 14(12): e0222737, 2019.
Article in English | MEDLINE | ID: mdl-31846458

ABSTRACT

The importance of geographic location and annual variation on the detection of differences in the rhizomicrobiome caused by the genetic modification of maize (Bt-maize, event MON810) was evaluated at experimental field sites across Europe including Sweden, Denmark, Slovakia and Spain. DNA of the rhizomicrobiome was collected at the maize flowering stage in three consecutive years and analyzed for the abundance and diversity of PCR-amplified structural genes of Bacteria, Archaea and Fungi, and functional genes for bacterial nitrite reductases (nirS, nirK). The nirK genes were always more abundant than nirS. Maize MON810 did not significantly alter the abundance of any microbial genetic marker, except for sporadically detected differences at individual sites and years. In contrast, annual variation between sites was often significant and variable depending on the targeted markers. Distinct, site-specific microbial communities were detected but the sites in Denmark and Sweden were similar to each other. A significant effect of the genetic modification of the plant on the community structure in the rhizosphere was detected among the nirK denitrifiers at the Slovakian site in only one year. However, most nirK sequences with opposite response were from the same or related source organisms suggesting that the transient differences in community structure did not translate to the functional level. Our results show a lack of effect of the genetic modification of maize on the rhizosphere microbiome that would be stable and consistent over multiple years. This demonstrates the importance of considering annual variability in assessing environmental effects of genetically modified crops.


Subject(s)
Microbiota/genetics , Rhizome/genetics , Zea mays/genetics , Archaea/genetics , Bacteria/genetics , Crops, Agricultural/genetics , Denitrification , Denmark , Europe , Fungi/genetics , Gene Editing , Nitrite Reductases/metabolism , Nitrogen/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Polymerase Chain Reaction/methods , Slovakia , Soil/chemistry , Soil Microbiology , Spain , Zea mays/growth & development
18.
Sci Rep ; 9(1): 9795, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278291

ABSTRACT

Soil salinization is a major constraint of agriculture in semiarid ecosystems. In this study soil microcosms were applied to evaluate the impact of a lower- and higher-level salinization treatment of a pristine scrubland soil on the abundance of Bacteria, Archaea, and Fungi, and on prokaryotic diversity in bare soil and the rhizosphere of wheat assessed by qPCR and high-throughput sequencing of 16S rRNA gene amplicons. Furthermore, the impact of soil straw amendment as a salt-stress alleviation strategy was studied. While the low-level salinity stimulated plant growth, the seedlings did not survive under the higher-level salinity unless the soil was amended with straw. Without the straw amendment, salinization had only minor effects on the microbial community in bare soil. On the other hand, it decreased prokaryotic diversity in the rhizosphere of wheat, but the straw amendment was effective in mitigating this effect. The straw however, was not a significant nutrient source for the rhizosphere microbiota but more likely acted indirectly by ameliorating the salinity stress on the plant. Members of Proteobacteria, Actinobacteria, and Firmicutes were abundant among the bacteria that reacted to soil salinization and the straw amendment but showed inconsistent responses indicating the large physiological diversity within these phyla.


Subject(s)
Microbiota/genetics , Rhizosphere , Salinity , Soil Microbiology , Soil/chemistry , Triticum/growth & development , Triticum/genetics , Archaea/genetics , Bacteria/genetics , Biphenyl Compounds/pharmacology , Carbamates/pharmacology , Crop Production , Fungi/genetics , High-Throughput Nucleotide Sequencing , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pyrazoles/pharmacology , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction
19.
Nat Ecol Evol ; 3(3): 381-389, 2019 03.
Article in English | MEDLINE | ID: mdl-30778181

ABSTRACT

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.


Subject(s)
Anura/microbiology , Climate , Microbiota , Urodela/microbiology , Animals , Bacteria/classification , Bacterial Physiological Phenomena , Skin/microbiology
20.
Sci Total Environ ; 653: 886-896, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759614

ABSTRACT

World-wide water scarcity is urging the use of treated wastewater (TWW) for irrigation but this practice may have adverse effects on soil and crop contamination due to the introduction of potential microbial pathogens. The objective of this study was to evaluate the potential health risks caused by TWW irrigation of soils differing in their texture, i.e., soil particle fractions including sand, silt and clay. We predicted that the presence of fecal indicator bacteria (FIB) and pathogens would not be linked to TWW irrigation, yet their abundance would be favored by the smallest soil fraction (~2 nm, e.g., clay) as it provides the largest surface area. To test our hypotheses, culture dependent and independent techniques were used to monitor the presence, abundance and source of FIB and microbial pathogens (bacteria and protists) in water (TWW and potable water) and three irrigated soil types (clay, loam and loamy-sand) in a field study spanning two years. The results showed that FIB and pathogens' abundance were significantly different between water types, yet these differences did not carry to the irrigated soils. The abundance and presence of FIB and potential opportunistic or obligate human pathogens did not significantly differ (p > 0.05) between TWW and potable water irrigated soils. Moreover, the source of the FIB and potential pathogens could not be linked to irrigation with TWW. Yet, soil type significantly altered the potential pathogens' diversity (p < 0.05) and abundance (p < 0.05), and differences were affected by clay content, as predicted. The results gave no indication for potential adverse health effects associated with the application of TWW but demonstrated that clay has a particular stabilizing effect on the potential presence of microbial pathogens.


Subject(s)
Agricultural Irrigation , Soil Microbiology/standards , Soil/chemistry , Wastewater/microbiology , Water Purification/methods , Israel , Models, Theoretical , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...