Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Neurophotonics ; 11(2): 024207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577628

ABSTRACT

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1 cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

2.
ACS Chem Biol ; 19(2): 428-441, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38289242

ABSTRACT

Protein-protein interactions (PPIs) can be detected through selective complementation of split fluorescent reporters made of two complementary fragments that reassemble into a functional fluorescent reporter when in close proximity. We previously introduced splitFAST, a chemogenetic PPI reporter with rapid and reversible complementation. Here, we present the engineering of splitFAST2, an improved reporter displaying higher brightness, lower self-complementation, and higher dynamic range for optimal monitoring of PPI using an original protein engineering strategy that exploits proteins with orthology relationships. Our study allowed the identification of a system with improved properties and enabled a better understanding of the molecular features controlling the complementation properties. Because of the rapidity and reversibility of its complementation, its low self-complementation, high dynamic range, and improved brightness, splitFAST2 is well suited to study PPI with high spatial and temporal resolution, opening great prospects to decipher the role of PPI in various biological contexts.


Subject(s)
Protein Interaction Mapping , Proteins , Proteins/genetics , Proteins/metabolism , Protein Engineering
3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076863

ABSTRACT

Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.

4.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37905143

ABSTRACT

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1 - a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We used protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusion: T-GECO1 is a high performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

5.
J Am Chem Soc ; 145(27): 14647-14659, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37367935

ABSTRACT

Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Carbocyanines/chemistry , Antibodies, Monoclonal/chemistry , Fluorescent Dyes/chemistry , Optical Imaging
6.
Proc Biol Sci ; 290(1997): 20230124, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122256

ABSTRACT

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.


Subject(s)
Mentoring , Female , Humans , Pilot Projects , Mentors , Faculty , Peer Group
7.
Curr Opin Pharmacol ; 62: 159-167, 2022 02.
Article in English | MEDLINE | ID: mdl-35042169

ABSTRACT

Fluorescent indicators and actuators provide a means to optically observe and perturb dynamic events in living animals. Although chemistry and protein engineering have contributed many useful tools to observe and perturb cells, an emerging strategy is to use chemigenetics: systems in which a small molecule dye interacts with a genetically encoded protein domain. Here we review chemigenetic strategies that have been successfully employed in living animals as photosensitizers for photoablation experiments, fluorescent cell cycle indicators, and fluorescent indicators for studying dynamic biological signals. Although these strategies at times suffer from challenges, e.g. delivery of the small molecule and assembly of the chemigenetic unit in living animals, the advantages of using small molecules with high brightness, low photobleaching, no chromophore maturation time and expanded color palette, combined with the ability to genetically target them to specific cell types, make chemigenetic fluorescent actuators and indicators an attractive strategy for use in living animals.


Subject(s)
Fluorescent Dyes , Protein Engineering , Animals , Fluorescent Dyes/chemistry , Humans
8.
Nat Commun ; 12(1): 6989, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848727

ABSTRACT

Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.


Subject(s)
Diagnostic Imaging/methods , Fluorescence , Protein Engineering/methods , Animals , Biocompatible Materials , Biosensing Techniques , Color , Coloring Agents , Electronics , Female , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Green Fluorescent Proteins , Male , Neurons , Rats , Rats, Sprague-Dawley
9.
J Biol Inorg Chem ; 26(7): 855-862, 2021 10.
Article in English | MEDLINE | ID: mdl-34487215

ABSTRACT

Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.


Subject(s)
Copper , Nitrite Reductases , Binding Sites , Catalytic Domain , Electron Transport , Nitrite Reductases/metabolism
10.
Methods Mol Biol ; 2350: 253-265, 2021.
Article in English | MEDLINE | ID: mdl-34331290

ABSTRACT

Observing the localization, the concentration, and the distribution of proteins in cells or organisms is essential to understand theirs functions. General and versatile methods allowing multiplexed imaging of proteins under a large variety of experimental conditions are thus essential for deciphering the inner workings of cells and organisms. Here, we present a general method based on the non-covalent labeling of a small protein tag, named FAST (fluorescence-activating and absorption-shifting tag), with various fluorogenic ligands that light up upon labeling, which makes the simple, robust, and versatile on-demand labeling of fusion proteins in a wide range of experimental systems possible.


Subject(s)
Fluorescent Dyes , Recombinant Fusion Proteins/metabolism , Staining and Labeling/methods , Animals , Cell Line , Flow Cytometry , Humans , Microscopy, Fluorescence/methods , Molecular Structure , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Zebrafish
11.
Angew Chem Int Ed Engl ; 60(18): 10073-10081, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33543524

ABSTRACT

Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.


Subject(s)
Luminescent Proteins/chemistry , Hydrogen Bonding , Luminescent Proteins/genetics , Models, Molecular , Protein Conformation
12.
Nat Chem Biol ; 17(1): 30-38, 2021 01.
Article in English | MEDLINE | ID: mdl-32778846

ABSTRACT

Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.


Subject(s)
Biosensing Techniques , Fluorescent Dyes/chemistry , Molecular Biology/methods , Optical Imaging/methods , Plasmids/chemistry , Staining and Labeling/methods , Animals , Benzylidene Compounds/chemistry , COS Cells , Chlorocebus aethiops , Cloning, Molecular , Color , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/metabolism , Gene Expression , Oligonucleotides/genetics , Oligonucleotides/metabolism , Plasmids/metabolism , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zebrafish
13.
Angew Chem Int Ed Engl ; 59(41): 17917-17923, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32568417

ABSTRACT

Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein-protein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors.


Subject(s)
Fluorescent Dyes/chemistry , Molecular Imaging/methods , Animals , Chick Embryo , HeLa Cells , Humans , Protein Binding , Zebrafish/embryology
14.
Curr Opin Chem Biol ; 57: 58-64, 2020 08.
Article in English | MEDLINE | ID: mdl-32580134

ABSTRACT

Fluorescent biosensors are powerful tools for the detection of biochemical events inside cells with high spatiotemporal resolution. Biosensors based on fluorescent proteins often suffer from issues with photostability and brightness. On the other hand, hybrid, chemical-genetic systems present unique opportunities to combine the strengths of synthetic, organic chemistry with biological macromolecules to generate exquisitely tailored semisynthetic sensors.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Optical Imaging/methods , Animals , Humans , Protein Interaction Maps , Proteins/analysis , RNA/analysis
15.
Nat Commun ; 10(1): 3730, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31413330

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Commun ; 10(1): 2822, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249300

ABSTRACT

Interactions between proteins play an essential role in metabolic and signaling pathways, cellular processes and organismal systems. We report the development of splitFAST, a fluorescence complementation system for the visualization of transient protein-protein interactions in living cells. Engineered from the fluorogenic reporter FAST (Fluorescence-Activating and absorption-Shifting Tag), which specifically and reversibly binds fluorogenic hydroxybenzylidene rhodanine (HBR) analogs, splitFAST displays rapid and reversible complementation, allowing the real-time visualization of both the formation and the dissociation of a protein assembly.


Subject(s)
Protein Interaction Mapping/methods , Proteins/chemistry , Cell Line , Fluorescence , Genes, Reporter , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Protein Binding , Proteins/metabolism , Rhodanine/chemistry , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Red Fluorescent Protein
17.
Light Sci Appl ; 7: 97, 2018.
Article in English | MEDLINE | ID: mdl-30510693

ABSTRACT

Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging.

18.
Biochemistry ; 57(39): 5648-5653, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30204425

ABSTRACT

Inducible chemical-genetic fluorescent markers are promising tools for live cell imaging requiring high spatiotemporal resolution and low background fluorescence. The fluorescence-activating and absorption shifting tag (FAST) was recently developed to form fluorescent molecular complexes with a family of small, synthetic fluorogenic chromophores (so-called fluorogens). Here, we use rational design to modify the binding pocket of the protein and screen for improved fluorescence performances with four different fluorogens. The introduction of a single mutation results in improvements in both quantum yield and dissociation constant with nearly all fluorogens tested. Our improved FAST (iFAST) allowed the generation of a tandem iFAST (td-iFAST) that forms green and red fluorescent reporters 1.6-fold and 2-fold brighter than EGFP and mCherry, respectively, while having a comparable size.


Subject(s)
Bacterial Proteins/chemistry , Fluorescent Dyes/chemistry , Photoreceptors, Microbial/chemistry , Rhodanine/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Binding Sites , Escherichia coli/chemistry , Fluorescence , Fluorescent Dyes/metabolism , HEK293 Cells , Halorhodospira halophila/chemistry , Humans , Light , Microscopy, Confocal , Mutagenesis, Site-Directed , Mutation , Photobleaching/radiation effects , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Photoreceptors, Microbial/radiation effects , Protein Binding , Rhodanine/metabolism , Spectrometry, Fluorescence
19.
Bioessays ; 40(10): e1800118, 2018 10.
Article in English | MEDLINE | ID: mdl-30152860

ABSTRACT

Fluorescence imaging has become an indispensable tool in cell and molecular biology. GFP-like fluorescent proteins have revolutionized fluorescence microscopy, giving experimenters exquisite control over the localization and specificity of tagged constructs. However, these systems present certain drawbacks and as such, alternative systems based on a fluorogenic interaction between a chromophore and a protein have been developed. While these systems are initially designed as fluorescent labels, they also present new opportunities for the development of novel labeling and detection strategies. This review focuses on new labeling protocols, actuation methods, and biosensors based on fluorogenic protein systems.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Proteins/chemistry , Proteins/metabolism , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism
20.
ACS Chem Biol ; 13(9): 2392-2397, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30088915

ABSTRACT

Fluorescent reporters are essential components for the design of optical biosensors that are able to image intracellular analytes in living cells. Herein, we describe the development of circularly permuted variants of Fluorescence-Activating and absorption-Shifting Tag (FAST) and demonstrate their potential as reporting module in biosensors. Circularly permutated FAST (cpFAST) variants allow one to condition the binding and activation of a fluorogenic ligand (and thus fluorescence) to analyte recognition by coupling them with analyte-binding domains. We demonstrated their use for biosensor design by generating multicolor plug-and-play fluorogenic biosensors for imaging the intracellular levels of Ca2+ in living mammalian cells in real time.


Subject(s)
Bacterial Proteins/metabolism , Biosensing Techniques/methods , Calcium/analysis , Fluorescent Dyes/metabolism , Optical Imaging/methods , Photoreceptors, Microbial/metabolism , Rhodanine/metabolism , Bacterial Proteins/chemistry , Calcium/metabolism , Fluorescence , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Ligands , Microscopy, Fluorescence/methods , Photoreceptors, Microbial/chemistry , Protein Binding , Rhodanine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...