Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 130(5): 728-740, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35135328

ABSTRACT

BACKGROUND: Marfan syndrome (MFS) is associated with TGF (transforming growth factor) ß-stimulated ERK (extracellular signal-regulated kinase) activity in vascular smooth muscle cells (VSMCs), which adopt a mixed synthetic/contractile phenotype. In VSMCs, TGFß induces IL (interleukin) 11) that stimulates ERK-dependent secretion of collagens and MMPs (matrix metalloproteinases). Here, we examined the role of IL11 in the MFS aorta. METHODS: We used echocardiography, histology, immunostaining, and biochemical methods to study aortic anatomy, physiology, and molecular endophenotypes in Fbn1C1041G/+ mice, an established murine model of MFS (mMFS). mMFS mice were crossed to an IL11-tagged EGFP (enhanced green fluorescent protein; Il11EGFP/+) reporter strain or to a strain deleted for the IL11 receptor (Il11ra1-/-). In therapeutic studies, mMFS were administered an X209 (neutralizing antibody against IL11RA [IL11 receptor subunit alpha]) or IgG for 20 weeks and imaged longitudinally. RESULTS: IL11 mRNA and protein were elevated in the aortas of mMFS mice, as compared to controls. mMFS mice crossed to Il11EGFP/+ mice had increased IL11 expression in VSMCs, notably in the aortic root and ascending aorta. As compared to the mMFS parental strain, double mutant mMFS:Il11ra1-/- mice had reduced aortic dilatation and exhibited lesser fibrosis, inflammation, elastin breaks, and VSMC loss, which was associated with reduced aortic COL1A1 (collagen type I alpha 1 chain), IL11, MMP2/9, and phospho-ERK expression. To explore therapeutic targeting of IL11 signaling in MFS, we administered either a neutralizing antibody against IL11RA (X209) or an IgG control. After 20 weeks of antibody administration, as compared to IgG, mMFS mice receiving X209 had reduced thoracic and abdominal aortic dilation as well as lesser fibrosis, inflammation, elastin breaks, and VSMC loss. By immunoblotting, X209 was shown to reduce aortic COL1A1, IL11, MMP2/9, and phospho-ERK expression. CONCLUSIONS: In MFS, IL11 is upregulated in aortic VSMCs to cause ERK-related thoracic aortic dilatation, inflammation, and fibrosis. Therapeutic inhibition of IL11, imminent in clinical trials, might be considered as a new approach in MFS.


Subject(s)
Aortic Diseases , Marfan Syndrome , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Aorta/metabolism , Aortic Diseases/pathology , Disease Models, Animal , Elastin/metabolism , Fibrosis , Immunoglobulin G/metabolism , Inflammation/metabolism , Interleukin-11/metabolism , Interleukin-11 Receptor alpha Subunit , Marfan Syndrome/complications , Marfan Syndrome/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Receptors, Interleukin-11/metabolism , Transforming Growth Factor beta/metabolism
2.
Clin Exp Pharmacol Physiol ; 48(4): 605-613, 2021 04.
Article in English | MEDLINE | ID: mdl-33462828

ABSTRACT

Interleukin-11 (IL11) is important for fibroblast-to-myofibroblast transformations. Here, we examined the signalling and phenotypic effects of inhibiting IL11 signalling using neutralizing antibodies against IL11 or its cognate receptor (IL11RA) in a mouse model of acute and severe pressure overload. C57BL/6J mice underwent ascending aortic constriction (AAC) surgery and were randomized to anti-IL11, anti-IL11RA, or isotype control antibodies (20 mg/kg, bi-weekly for 2 weeks). AAC surgery induced the expression of IL11, IL11RA and extracellular matrix (ECM) genes that was associated with cardiac hypertrophy and aortic remodelling. Inhibition of IL11 signalling reduced AAC-induced cardiac fibrosis and ECM gene expression as well as ERK1/2 phosphorylation but had no effect on cardiac hypertrophy. STAT3 was phosphorylated in the hearts of AAC-treated mice but this was unrelated to IL11 activity, which we confirmed in mouse cardiac fibroblasts in vitro. These data highlight that blocking IL11 signalling reduces cardiac fibrosis due to severe pressure overload and suggests ERK, but not STAT3, activity as the relevant underlying signalling pathway.


Subject(s)
Cardiomegaly , Interleukin-11 , Animals , Fibrosis , Mice , Signal Transduction/drug effects
3.
J Cardiovasc Transl Res ; 14(2): 222-228, 2021 04.
Article in English | MEDLINE | ID: mdl-32592090

ABSTRACT

There are currently no specific treatments for cardiac fibrosis. We tested the efficacy of a neutralising anti-IL11 antibody (X203) to reduce cardiac fibrosis in two preclinical models: transverse aortic constriction (TAC) and chronic angiotensin II infusion (AngII). In the first model, male C57BL/6J mice were subjected to TAC for 2 weeks. In the second model, mice received continuous angiotensin II for 4 weeks via subcutaneous pump. In both models, mice received either 20 mg/kg of X203 or isotype-control antibody twice-weekly, starting 24 h after surgery. Cardiac fibrosis and extracellular matrix gene expression were assessed by RT-qPCR, Western blot, histology and collagen (hydroxyproline) assays. In both models, X203 significantly reduced pro-fibrotic gene expression and myocardial fibrosis (TAC: 51% reduction in total collagen, P < 0.001, 39% in perivascular fibrosis, P < 0.001; AngII: 17% reduction in total collagen, P = 0.04, 83% in perivascular fibrosis, P < 0.001). Pharmacological targeting of IL11 reduces cardiac fibrosis in preclinical models. Figa Graphical Abstract.


Subject(s)
Antibodies, Neutralizing/pharmacology , Aorta/surgery , Cardiomyopathies/prevention & control , Interleukin-11/antagonists & inhibitors , Myocardium/metabolism , Angiotensin II , Animals , Aorta/physiopathology , Arterial Pressure , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Collagen/genetics , Collagen/metabolism , Constriction , Disease Models, Animal , Fibronectins/genetics , Fibronectins/metabolism , Fibrosis , Hydroxyproline/metabolism , Interleukin-11/metabolism , Male , Mice, Inbred C57BL , Myocardium/pathology , Signal Transduction
4.
Sci Rep ; 10(1): 17853, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082445

ABSTRACT

Transforming growth factor beta-1 (TGFß1) is a major driver of vascular smooth muscle cell (VSMC) phenotypic switching, an important pathobiology in arterial disease. We performed RNA-sequencing of TGFß1-stimulated human aortic or arterial VSMCs which revealed large and consistent upregulation of Interleukin 11 (IL11). IL11 has an unknown function in VSMCs, which highly express the IL11 receptor alpha, suggestive of an autocrine loop. In vitro, IL11 activated ERK signaling, but inhibited STAT3 activity, and caused VSMC phenotypic switching to a similar extent as TGFß1 or angiotensin II (ANGII) stimulation. Genetic or therapeutic inhibition of IL11 signaling reduced TGFß1- or ANGII-induced VSMC phenotypic switching, placing IL11 activity downstream of these factors. Aortas of mice with Myh11-driven IL11 expression were remodeled and had reduced contractile but increased matrix and inflammatory genes expression. In two models of arterial pressure loading, IL11 was upregulated in the aorta and neutralizing IL11 antibodies reduced remodeling along with matrix and pro-inflammatory gene expression. These data show that IL11 plays an important role in VSMC phenotype switching, vascular inflammation and aortic pathobiology.


Subject(s)
Aorta/pathology , Interleukin-11/physiology , Models, Animal , Muscle, Smooth, Vascular/pathology , Phenotype , Vascular Remodeling/physiology , Animals , Antibodies, Neutralizing/immunology , Aorta/physiopathology , Fibrosis , Interleukin-11/immunology , Mice , Receptors, Interleukin-11/genetics , Receptors, Interleukin-11/immunology , Transforming Growth Factor beta1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...