Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 223(Pt 22)2020 11 18.
Article in English | MEDLINE | ID: mdl-33071217

ABSTRACT

The production of biotremors has been described in veiled chameleons (Chamaeleo calyptratus), but the mechanism by which they are produced is unknown. We gathered muscle activation data via electromyography (EMG), with simultaneous recordings of biotremors using an accelerometer, to test for the role of hyoid muscles in biotremor production. We recorded a mean biotremor frequency of 150.87 Hz for females and 136.01 Hz for males. The durations of activity and the latencies to onset and offset for the M. sternohyoideus profundus (SP), M. sternohyoideus superficialis (SS), Mm. mandibulohyoideus (MH) and M. levator scapulae (LS) were all significantly correlated with biotremor durations and biotremor onset and offset, respectively. Linear mixed-effect regression model comparisons of biotremor duration indicated that models containing either the MH and/or the SP and LS account for the most variation in biotremor duration. Twitch times for the SP (100 ms) and the SS (132 ms) at field active body temperature, however, were individually too slow to produce the biotremors at the observed frequency without alteration after production by other anatomical structures. These results implicate the SP, SS, MH and LS in the production of biotremors, but the exact mechanism of production requires further study.


Subject(s)
Lizards , Animals , Electromyography , Female , Male , Muscles
2.
Anat Rec (Hoboken) ; 303(8): 2248-2261, 2020 08.
Article in English | MEDLINE | ID: mdl-31680478

ABSTRACT

Numerous chameleon species possess an out-pocketing of the trachea known as the gular pouch. After surveying more than 250 specimens, representing nine genera and 44 species, we describe two different morphs of the gular pouch. Species of the genera Bradypodion and Chamaeleo, as well as Trioceros goetzei, all possess a single gular pouch (morph one) formed from ventral expansion of soft tissue where the larynx and trachea meet. Furcifer oustaleti and Furcifer verrucosus possess from one to four gular pouches (morph two) formed by the expansion of soft tissue between sequential hyaline cartilage rings of the trachea. In Trioceros melleri, examples of both morphs of the gular pouch were observed. Morphometric data are presented for 100 animals representing eight species previously known to possess a gular pouch and two additional species, Bradypodion thamnobates and Bradypodion transvaalense. In the species with the absolutely and relatively largest gular pouch, Chamaeleo calyptratus, a significant difference was found between sexes in its width and volume, but not its length. In C. calyptratus, we show that an inflated gular pouch is in contact with numerous hyoid muscles and the tongue. Coupled with the knowledge that C. calyptratus generates vibrations from the throat region, we posit that the tongue (M. accelerator linguae and M. hyoglossus) and supporting hyoid muscles (i.e., Mm. sternohyoideus profundus et superficialis and Mm. mandibulohyoideus) are involved in the production of vibrations to produce biotremors that are amplified by the inflated gular pouch and used in substrate-borne communication.


Subject(s)
Animal Communication , Lizards/anatomy & histology , Neck Muscles/anatomy & histology , Pharynx/anatomy & histology , Trachea/anatomy & histology , Animals , Lizards/physiology , Neck Muscles/physiology , Pharynx/physiology , Trachea/physiology , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...