Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(8): 5064-5069, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126700

ABSTRACT

As multifunctional materials, rare-earth hexaborides (RB6) display many interesting physical properties such as optical absorption, magnetic and thermionic emission. With the wide application of rare earth hexaboride and the continuous extension of its research fields, researchers have studied the synthesis of multi-rare earth hexaboride nano-powders and their thermal emission and light absorption properties. In the present work, ternary Single-phase LaxPr1-xB6 submicron powders are successfully synthesized using a solid-state reaction, in which lanthanum chloride (LaCl3) and praseodymium chloride (PrCl3) are used as rare-earth source and NaBH4 as the boron source under continuous vacuum conditions. The reaction temperature is 1150 °C and the holding time is 2 h. The Pr doping effects on crystal structure, grain morphology, and optical absorption properties were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and ultraviolet-vis absorption measurements. The XRD patterns show that the diffraction peaks are sharp and well-defined, and no other extra impurity peaks were detected, indicating the characteristics of well-crystallized materials. It is found that all the LaxPr1-xB6 solid powders are of single phase. The SEM results demonstrate that the cubicshaped ternary LaxPr1-xB6 submicron crystals with a size of 50~200 nm are obtained. The TEM images reveal the cubic single-crystalline nature, and the FFT patterns implies the lattice fringe d = 0.416 nm which agrees well with the (100) crystal plane. The elements mapping results indicates that the Pr atoms occupied the lattice sites of LaB6. The optical absorption results show that the absorption valley of LaB6 are located at 591 nm. With the increase of Pr doping contents from 0.2 to 0.8, the absorption valley moves from 596.3 nm to 612.9 nm, indicating the characteristics of visible light high transparency. The first-principle calculation results manifest that the move of the absorption valley of LaB6 in the visible region after doping Pr is related to the decrease of kinetic energy of electrons near the Fermi plane. X-ray photoelectron spectroscopy (XPS) analysis shows that the La and Pr exist in the type of La3+ and Pr3+ in LaxPr1-xB6. Therefore, it exists as an efficient optical absorption material. The LaxPr1-xB6 should open up a new route to extend the optical applications of rare-earth hexaborides.

2.
Phys Chem Chem Phys ; 18(28): 19165-72, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27362626

ABSTRACT

Multiple nanocrystalline rare-earth hexaborides La1-xBaxB6 have been synthesized via a single step solid-state reaction. The Ba doping effects on crystal structure, grain morphology, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, SQUID magnetometry and optical measurements. The results show that all the Ba-doped hexaborides crystallize in the CsCl-type single phase, indicating the Ba atoms occupied the lattice sites of LaB6. The optical absorption results indicate that the absorption valleys of LaB6 are red-shifted from 622 nm to 780 nm when the Ba doping content increases to x = 0.8. The first-principle calculation results reveal that Ba doping reduces the total kinetic energy of the electrons of LaB6, which lead to the absorption valleys moving toward a higher wavelength. Meanwhile, the band gap of BaB6 obtained from optical absorption is in good agreement with the theoretical calculation results. The magnetic measurements results showed that Ba doping lead to room-temperature ferromagnetism of LaB6 due to the different ionic radii of La(3+) and Ba(2+) causing intrinsic crystal defects, which is directly observed experimentally by HRTEM. This is the first time that we have found the tunable optical and ferromagnetic behavior of Ba doped nanocrystalline LaB6. Thus, nanocrystalline La1-xBaxB6, as multi-functional materials, should open up a new route to extend the optical and magnetic applications of LaB6 nanopowder.

3.
Phys Rev Lett ; 91(6): 066405, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12935093

ABSTRACT

We present low-temperature volume thermal expansion, beta, and specific heat, C, measurements on high-quality single crystals of CeNi2Ge2 and YbRh2(Si0.95Ge0.05)(2) which are located very near to quantum critical points. For both systems, beta shows a more singular temperature dependence than C, and thus the Grüneisen ratio Gamma proportional to beta/C diverges as T-->0. For CeNi2Ge2, our results are in accordance with the spin-density wave (SDW) scenario for three-dimensional critical spin fluctuations. By contrast, the observed singularity in YbRh2(Si0.95Ge0.05)(2) cannot be explained by the itinerant SDW theory but is qualitatively consistent with a locally quantum critical picture.

4.
Nature ; 415(6868): 150-2, 2002 Jan 10.
Article in English | MEDLINE | ID: mdl-11805828

ABSTRACT

Magnetic refrigeration techniques based on the magnetocaloric effect (MCE) have recently been demonstrated as a promising alternative to conventional vapour-cycle refrigeration. In a material displaying the MCE, the alignment of randomly oriented magnetic moments by an external magnetic field results in heating. This heat can then be removed from the MCE material to the ambient atmosphere by heat transfer. If the magnetic field is subsequently turned off, the magnetic moments randomize again, which leads to cooling of the material below the ambient temperature. Here we report the discovery of a large magnetic entropy change in MnFeP0.45As0.55, a material that has a Curie temperature of about 300 K and which allows magnetic refrigeration at room temperature. The magnetic entropy changes reach values of 14.5 J K-1 kg-1 and 18 J K-1 kg-1 for field changes of 2 T and 5 T, respectively. The so-called giant-MCE material Gd5Ge2Si2 (ref. 2) displays similar entropy changes, but can only be used below room temperature. The refrigerant capacity of our material is also significantly greater than that of Gd (ref. 3). The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...