Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38365441

ABSTRACT

Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.

2.
Nat Commun ; 14(1): 7062, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923717

ABSTRACT

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macaca mulatta , COVID-19/pathology , Respiratory Aerosols and Droplets , Lung/pathology , Antibodies, Viral , Virus Replication , Antibodies, Monoclonal
3.
Front Immunol ; 14: 1178355, 2023.
Article in English | MEDLINE | ID: mdl-37334379

ABSTRACT

SARS-CoV-2, the virus behind the COVID-19 pandemic, has changed over time to the extent that the current virus is substantially different from what originally led to the pandemic in 2019-2020. Viral variants have modified the severity and transmissibility of the disease and continue do so. How much of this change is due to viral fitness versus a response to immune pressure is hard to define. One class of antibodies that continues to afford some level of protection from emerging variants are those that closely overlap the binding site for angiotensin-converting enzyme 2 (ACE2) on the receptor binding domain (RBD). Some members of this class that were identified early in the course of the pandemic arose from the VH 3-53 germline gene (IGHV3-53*01) and had short heavy chain complementarity-determining region 3s (CDR H3s). Here, we describe the molecular basis of the SARS-CoV-2 RBD recognition by the anti-RBD monoclonal antibody CoV11 isolated early in the COVID-19 pandemic and show how its unique mode of binding the RBD determines its neutralization breadth. CoV11 utilizes a heavy chain VH 3-53 and a light chain VK 3-20 germline sequence to bind to the RBD. Two of CoV11's four heavy chain changes from the VH 3-53 germline sequence, ThrFWR H128 to Ile and SerCDR H131 to Arg, and some unique features in its CDR H3 increase its affinity to the RBD, while the four light chain changes from the VK 3-20 germline sequence sit outside of the RBD binding site. Antibodies of this type can retain significant affinity and neutralization potency against variants of concern (VOCs) that have diverged significantly from original virus lineage such as the prevalent omicron variant. We also discuss the mechanism by which VH 3-53 encoded antibodies recognize spike antigen and show how minimal changes to their sequence, their choice of light chain, and their mode of binding influence their affinity and impact their neutralization breadth.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Multigene Family , Antibodies
4.
Nat Commun ; 13(1): 7298, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435827

ABSTRACT

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Mice , Humans , Animals , Hemorrhagic Fever Virus, Crimean-Congo/chemistry , Hemorrhagic Fever, Crimean/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Antibodies, Monoclonal
SELECTION OF CITATIONS
SEARCH DETAIL
...