Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Genet ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619706

ABSTRACT

Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.

2.
Heliyon ; 10(6): e27434, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38501011

ABSTRACT

Background and aims: The occurrence of thiamine metabolism dysfunction syndrome (THMD), a rare autosomal recessive condition, may be linked to various mutations found in the TPK1 and SLC19A3 genes. The disease chiefly manifests through ataxia, muscle hypotonia, abrupt or subacute onset encephalopathy, and a decline in developmental milestones achieved during the early stages of infancy. We present findings from an investigation that involved two individuals from Iran, both of whom experienced seizures along with ataxia and hypotonia. The underlying genetic causes were found with the use of next-generation sequencing (NGS) technology, which has facilitated the detection of causal changes in a variety of genetic disorders. Material and methods: The selection of cases for this study was based on the phenotypic and genetic information that was obtainable from the Center for Comprehensive Genetic Services. The genetic basis for the problems observed among the participants was determined through the application of whole-exome sequencing (WES). Subsequently, sanger sequencing was employed as a means of validating any identified variations suspected to be causative. Results: The first patient exhibited a homozygous mutation in the TPK1 gene, NM_022445.4:c.224 T > A:p.I75 N, resulting in the substitution of isoleucine for asparagine at position 75 (p.I75 N). In our investigation, patient 2 exhibited a homozygous variant, NM_025243.4:c.1385dupA:pY462X, within the SLC19A3 gene. Conclusions: Collectively, when presented with patients showcasing ataxia, encephalopathy, and basal ganglia necrosis, it is essential to account for thiamine deficiency in light of the potential advantages of prompt intervention. At times, it may be feasible to rectify this deficiency through the timely administration of thiamine dosages. Accordingly, based on the results of the current investigation, these variations may be useful for the diagnosis and management of patients with THMD.

3.
BMC Med Genomics ; 17(1): 51, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347586

ABSTRACT

BACKGROUND: Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes. However, some types of PCH lack sufficient information, which highlights the importance of investigating and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders. The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance patterns in 12 distinct Iranian families with clinically confirmed PCH. METHODS: Cases included in this study were selected based on their phenotypic and genetic information available at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover the underlying genetic etiology of participants' problems, and Sanger sequencing was utilized to confirm any suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features of the various subtypes of PCH. RESULTS: This study classified and described the underlying etiology of PCH into three categories based on the genes involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported, including SEPSECS, TSEN2, TSEN54, AMPD2, TOE1, and CLP1. Almost all patients presented with developmental delay, hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR spectroscopy were novel phenotypes for the first time in PCH types 7 and 9. CONCLUSIONS: This study merges previously documented phenotypes and genotypes with unique novel ones. Due to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders. Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms and potential therapeutic targets for PCH.


Subject(s)
Cerebellar Diseases , Nuclear Proteins , Female , Pregnancy , Humans , Iran , Genotype , Phenotype , Mutation
4.
Neurol Sci ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421525

ABSTRACT

BACKGROUND: The ultra-rare autosomal recessive genetic disorder, You-Hoover-Fong Syndrome (YHFS), is caused by defects in the TELO2 gene and is characterized by intellectual disability, developmental delay, and ocular impairments. This study aims to contribute to a better understanding of YHFS by reviewing previous cases and introducing a novel variant in a new case. METHODS: Whole exome sequencing (WES) was conducted on the proband to identify genetic variants, and Sanger sequencing was used to confirm variants within the family. This article presents a comprehensive collection of reported cases of YHFS, incorporating both molecular and clinical data, through an extensive literature search and analysis of English-language studies published until June 2023. RESULTS: Using WES, a novel homozygous missense variant, c.1799A > G (p. Tyr600Cys), was identified in the TELO2 gene in a 4-year-old Iranian male patient. Novel clinical features, including choanal atresia and clubfoot, were also identified. A comprehensive literature review identified 27 patients with YHFS, with 20 variants in the TELO2 gene. Missense pathogenic variants were the most common type of pathogenic variant, and the most common features were microcephaly and intellectual impairment. CONCLUSION: This study presents the first case of pathogenic variants in TELO2 gene in Iran, expands the genotypic and phenotypic spectrum of YHFS and contributes to the growing body of literature pertaining to YHFS. Furthermore, our findings highlight the importance of genetic testing for non-consanguineous carrier screening, as compound heterozygosity may be a significant factor in the development of YHFS. Further research is needed to clarify the molecular mechanisms underlying YHFS pathogenesis.

5.
Cancer Cell Int ; 24(1): 26, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200584

ABSTRACT

This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.

6.
BMC Med Genomics ; 17(1): 20, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216990

ABSTRACT

BACKGROUND: Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder characterized by a range of physical, cognitive, and behavioral abnormalities. This study aimed to perform a comprehensive review of the literature on CdLS and investigate two cases of CdLS with distinct phenotypes that underwent WES to aid in their diagnosis. METHODS: We conducted a comprehensive review of the literature on CdLS along with performing whole-exome sequencing on two CdLS patients with distinct phenotypes, followed by Sanger sequencing validation and in-silico analysis. RESULTS: The first case exhibited a classic CdLS phenotype, but the initial WES analysis of blood-derived DNA failed to identify any mutations in CdLS-related genes. However, a subsequent WES analysis of skin-derived DNA revealed a novel heterozygous mutation in the NIPBL gene (NM_133433.4:c.6534_6535del, p.Met2178Ilefs*8). The second case was presented with a non-classic CdLS phenotype, and WES analysis of blood-derived DNA identified a heterozygous missense variant in the SMC1A gene (NM_006306.4:c.2320G>A, p.Asp774Asn). CONCLUSIONS: The study shows the importance of considering mosaicism in classic CdLS cases and the value of WES for identifying genetic defects. These findings contribute to our understanding of CdLS genetics and underscore the need for comprehensive genetic testing to enhance the diagnosis and management of CdLS patients.


Subject(s)
Cell Cycle Proteins , De Lange Syndrome , Humans , Cell Cycle Proteins/genetics , Exome , Mutation , Phenotype , DNA , Biopsy , De Lange Syndrome/genetics , De Lange Syndrome/diagnosis
7.
Neurol Sci ; 44(12): 4491-4498, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37452996

ABSTRACT

Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.3269G > A, and c.2648G > T, which are confirmed and segregated by Sanger sequencing. Consequently, intron 12's highly conserved splice donor location is disrupted by the pathogenic c.1434 + 1G > A variation, most likely causing the protein to degrade through nonsense-mediated decay (NMD). Subsequently, a premature stop codon is thus generated at amino acid 1090 of the protein as a result of the pathogenic c.3269G > A; p.W1090* variation, resulting in NMD or truncated protein production. Lastly, the missense mutation c.2648G > T; p.G883V can play a critical role in the interplay of functional domains. This study introduces recurrent urinary tract infections for the first time, broadening the phenotypic range of IHPRF1 syndrome in addition to the genotypic spectrum. This trait may result from insufficient bladder emptying, which may be related to the NALCN channelosome's function in background Na + conduction. This work advances knowledge about the molecular genetic underpinnings of IHPRF1 and introduces a novel phenotype through the widespread use of whole exome sequencing.


Subject(s)
Sodium Channels , Urinary Tract Infections , Humans , Sodium Channels/genetics , Sodium Channels/metabolism , Ion Channels/genetics , Membrane Proteins/genetics , Phenotype , Mutation, Missense , Syndrome , Urinary Tract Infections/genetics , Mutation/genetics
8.
Neurol Sci ; 44(11): 4041-4048, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37369877

ABSTRACT

Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes ß-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...