Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4579-4600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38319389

ABSTRACT

Myrtus communis L. (Family: Myrtaceae) is naturally found in the western part of Asia, Southern Europe, and North Africa. It has been reportedly applied in pharmaceutical industry, traditional medicine, cosmetics, spices, and food. Pubmed, Google scholar, Web of Science, and Scopus were utilized to seek out relevant content concerning the therapeutic potential of M. communis. Subsequently, we conducted a review to identity noteworthy updates pertaining to M. communis. Myrtle berries, leaves, seeds, and essential oils are natural sources of several nutrients and bioactive compounds with marked health effects. The chemical analysis showed that M. communis contained oils, alkaloids, flavonoids, phenolics, coumarins, saponosides, tannins, quinines, and anthraquinones. A pharmacological investigation revealed that M. communis possessed anti-inflammatory, analgesic, antimicrobial, antiparasitic, antioxidant, antidiabetic, anticancer, antimutagenic, immunomodulatory, dermatological, cardiovascular, central nervous system, and gastrointestinal protective effects, among numerous other biological effects. This current review focused on the biochemical, pharmacological, therapeutic effects, and various biological activities of different parts of M. communis. It signifies that M. communis is a therapeutic plant with numerous applications in medicine and could be used as a drug isolate based on its safety and effectiveness.


Subject(s)
Myrtus , Plant Extracts , Myrtus/chemistry , Humans , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/isolation & purification , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/therapeutic use , Phytotherapy
3.
Article in English | MEDLINE | ID: mdl-38010396

ABSTRACT

Lawsonia inermis Linn, commonly known as henna, is a member of the Lythraceae family and has been found to contain a variety of compounds with both industrial and medicinal applications in its stem, bark, roots, flowers, and seeds. This report provides a comprehensive review of the bioactive components, pharmacological activities, pharmacokinetics, and pharmacological side effects of Lawsonia inermis. Relevant materials were gathered from Google Scholar, PubMed, Scopus, and Web of Science and reviewed for important properties and updates about the plant. Lawsonia inermis contains a variety of bioactive compounds, including flavonoids, coumarins, triterpenoids, steroids, xanthones, polyphenols, fatty acids, alkaloids, quinones, tannins, leucocyandin, epicatechin, catechin, and quercetin. The plant is been traditionally used to treat numerous conditions, including ulcers, bronchitis, lumbago, hemicrania, leukoderma, scabies, boils, ophthalmic disorders, hair loss, and jaundice. It has also been found to possess a range of pharmacological activities, including antioxidant, anti-inflammatory, analgesic, antiparasitic, hepatoprotective, antifungal, antitumor, wound healing, and hypoglycemic effects. The potential of Lawsonia inermis for various biological applications is promising, and further studies are needed to fully explore its therapeutic benefits for various diseases of public health. Concern advances in drug development could enable the characterization of various bioactive constituents and facilitate their development and application for the benefit of humanity.

4.
Int J Equity Health ; 22(1): 189, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697315

ABSTRACT

INTRODUCTION: Cancer is a significant public health challenge globally, with nearly 2000 lives lost daily in Africa alone. Without adequate measures, mortality rates are likely to increase. The major challenge for cancer care in Africa is equity and prioritization, as cancer is not receiving adequate attention from policy-makers and strategic stakeholders in the healthcare space. This neglect is affecting the three primary tiers of cancer care: prevention, diagnosis, and treatment/management. To promote cancer care equity, addressing issues of equity and prioritization is crucial to ensure that everyone has an equal chance at cancer prevention, early detection, and appropriate care and follow-up treatment. METHODOLOGY: Using available literature, we provide an overview of the current state of cancer care in Africa and recommendations to close the gap. RESULTS: We highlight several factors that contribute to cancer care inequity in Africa, including inadequate funding for cancer research, poor cancer education or awareness, inadequate screening or diagnostic facilities, lack of a well-organized and effective cancer registry system and access to care, shortage of specialized medical staff, high costs for screening, vaccination, and treatment, lack of technical capacity, poor vaccination response, and/or late presentation of patients for cancer screening. We also provide recommendations to address some of these obstacles to achieving cancer care equity. Our recommendations are divided into national-level initiatives and capacity-based initiatives, including cancer health promotion and awareness by healthcare professionals during every hospital visit, encouraging screening and vaccine uptake, ensuring operational regional and national cancer registries, improving healthcare budgeting for staff, equipment, and facilities, building expertise through specialty training, funding for cancer research, providing insurance coverage for cancer care, and implementing mobile health technology for telemedicine diagnosis. CONCLUSION: Addressing challenges to cancer equity holistically would improve the likelihood of longer survival for cancer patients, lower the risk factors for groups that are already at risk, and ensure equitable access to cancer care on the continent. This study identifies the existing stance that African nations have on equity in cancer care, outlines the current constraints, and provides suggestions that could make the biggest difference in attaining equity in cancer care.


Subject(s)
Healthcare Disparities , Neoplasms , Humans , Administrative Personnel , Africa South of the Sahara , Biomedical Technology , Black People , Budgets , Neoplasms/diagnosis , Neoplasms/therapy , Healthcare Disparities/economics , Healthcare Disparities/ethnology
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1399-1413, 2023 07.
Article in English | MEDLINE | ID: mdl-36877269

ABSTRACT

Morus alba is a fast-growing shrub or medium-sized tree with a straight, cylindrical trunk. Medicinally, whole plants, leaves, fruits, branches, and roots have been employed. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical components and pharmacologic and mechanism of action of the Morus alba. This was reviewed to assess important updates about Morus alba. The fruits of Morus alba have traditionally been used as an analgesic, anthelmintic, antibacterial, anti-rheumatic, diuretic, hypotensive, hypoglycemia, purgative, restorative, sedative tonic, and blood stimulant. Various plant parts were used as a cooling, sedating, diuretic, tonic, and astringent agent to treat nerve disorders. The plant contained tannins, steroids, phytosterols, sitosterol, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, phenolics, flavonoids, benzofuran derivatives, anthocyanins, anthraquinones, glycosides, vitamins, and minerals. Previous pharmacological research identified antimicrobial, anti-inflammatory, immunological, analgesic, antipyretic, antioxidant, anti-cancer, antidiabetic, gastrointestinal, respiratory, cardiovascular, hypolipidemic, anti-obesity, dermatological, neurological, muscular, and protecting effects. This study looked at Morus alba's traditional uses, chemical components, and pharmacological effects.


Subject(s)
Alkaloids , Anti-Infective Agents , Anthocyanins , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Alkaloids/pharmacology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Caffeine
6.
Heliyon ; 9(3): e14387, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36942213

ABSTRACT

Mitochondrial dysfunction remains a pivotal mechanism in manifold neurodegenerative diseases. Mitochondrial homeostasis within the cell is an essential aspect of cell biology. Mitochondria, the power-generating organelle of the cell, have a dominant role in several processes associated with genomic integrity and cellular equilibrium. They are involved in maintaining optimal cell functioning and ensuring guidance against possible DNA damage, which could lead to mutations and the onset of diseases. Conversely, system perturbations, which could be due to environmental factors or senescence, induce changes in the physiological balance and result in mitochondrial function impairment. As a result, we present a general overview of the pathological pathways involved in Alzheimer's and Parkinson's diseases caused by changes in mitochondrial homeostasis. The focal point of this review is on mitochondrial dysfunction being a significant condition in the onset of neuronal disintegration. We explain the pathways associated with the dysfunction of the mitochondria, which are common among the most recurring neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Are mitochondrial dysfunctions an early event in the progression of neuropathological processes? We discovered that mtDNA mutation is a major contributor to the metabolic pathology of most neurological disorders, causing changes in genes important for physiological homeostasis. As a result, genetic changes in presenilin, Amyloid-, ABAD, DJ-1, PINK-1, PARKIN, alpha-synuclein, and other important controlling genes occur. Therefore, we suggest possible therapeutic solutions.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 877-900, 2023 05.
Article in English | MEDLINE | ID: mdl-36773055

ABSTRACT

Lavandula species is a flowering plant that is common in Europe and across the Mediterranean. Lavender has many health benefits for humans. In addition to its use in herbal medicine, it is widely used in the fields of cosmetics, perfumes, foods, and aromatherapy. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical ingredients, the pharmacologic effects of the ingredients, and the mechanism of action of the Lavandula species identified. These materials were reviewed in order to have access to important updates about the Lavandula species. Lavender as referred to in English contains essential oils, anthocyanins, phytosterols, sugars, minerals, coumaric acid, glycolic acid, valeric acid, ursolic acid, herniarins, coumarins, and tannins. It has been used to treat colic and chest ailments, worrisome headaches, and biliousness, and in cleaning wounds. It has antifungal, antibacterial, neurologic, antimicrobial, anti-parasitic, anti-diabetic, and analgesic effects among others. Lavandula species has prospects for various biological applications, especially with its dermatological application. Advances in drug development would enable characterization of various bioactive constituents; thus, its development and application can have a more positive impact on humanity. Here, we highlighted updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Lavandula species.


Subject(s)
Anti-Infective Agents , Lavandula , Oils, Volatile , Humans , Lavandula/chemistry , Anthocyanins , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Phytochemicals/pharmacology , Anti-Infective Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 421-440, 2023 03.
Article in English | MEDLINE | ID: mdl-36418467

ABSTRACT

Malva sylvestris is a plant commonly found in Europe, Asia, and Africa. The leaves and flowers of this plant have been used for centuries in traditional medicine to treat various ailments such as cough, cold, diarrhoea, and constipation. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical profiling and pharmacologic activities of Malva sylvestris. The techniques used in phytochemical profiling and the pharmacologic activity of each compound were extracted from the included studies, including in vitro, in vivo, and clinical studies. The phytochemical analysis of Malva sylvestris revealed that the leaves and flowers are the most commonly used parts of the plant and contain various bioactive compounds such as flavonoids, mucilages, terpenoids, phenol derivatives, coumarins, sterols, tannins, saponins, and alkaloids. These phytochemicals are responsible for the many pharmacological activities of Malva sylvestris, such as anti-inflammatory, antimicrobial, hepatoprotective, laxative, antiproliferative and antioxidant properties. This review has presented an overview of the antinociceptive and anti-inflammatory activities and the cytotoxic effects of Malva sylvestris on different types of cancer cells. It has also summarised the work on developing copper oxide nanoparticles using Malva sylvestris leaf extract and its potential use in food and medicine. This review aims to highlight the traditional uses, phytochemistry, pharmacological activities, and safety of Malva sylvestris.


Subject(s)
Malva , Plant Extracts , Plant Extracts/adverse effects , Phytotherapy , Malva/chemistry , Phytochemicals/adverse effects , Anti-Inflammatory Agents/chemistry
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 389-403, 2023 03.
Article in English | MEDLINE | ID: mdl-36385684

ABSTRACT

The roles of plants and its products in all forms of life cannot be overemphasized. The medicinal products from plant are phytochemicals, drugs, food supplements, beauty products, etc. In ethnomedicine, leaves, fruits, stem, bark, root and fluids from plants are used in the cure, management and prevention of several diseases. Cupressus sempervirens, sometimes called Italian or Mediterranean cypress, is found in subtropical Asia, North America and eastern Mediterranean region. Pharmacological investigations of Cupressus sempervirens showed biological properties such as aromatherapeutic, antiseptic, astringent, balsamic or anti-inflammatory, astringent, antiperspirant, diuretic and antispasmodic. Chemical analysis of Cupressus sempervirens gives phytochemicals like monoterpenes, diterpenes, flavonoid glycosides and bioflavonoids. The current review highlights interactions, conventional uses and biological actions of Cupressus sempervirens plant and plant products.


Subject(s)
Cupressus , Diterpenes , Cupressus/chemistry , Astringents , Monoterpenes , Fruit , Flavonoids/pharmacology
10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 405-420, 2023 03.
Article in English | MEDLINE | ID: mdl-36399185

ABSTRACT

Medicinal plants have a long track record of use in history, and one of them is Commiphora myrrh which is commonly found in the southern part of Arabia, the northeastern part of Africa, in Somalia, and Kenya. Relevant literatures were accessed via Google Scholar, PubMed, Scopus, and Web of Science to give updated information on the phytochemical constituents and pharmacological action of Commiphora myrrh. It has been used traditionally for treating wounds, mouth ulcers, aches, fractures, stomach disorders, microbial infections, and inflammatory diseases. It is used as an antiseptic, astringent, anthelmintic, carminative, emmenagogue, and as an expectorant. Phytochemical studies have shown that it contains terpenoids (monoterpenoids, sesquiterpenoids, and volatile/essential oil), diterpenoids, triterpenoids, and steroids. Its essential oil has applications in cosmetics, aromatherapy, and perfumery. Research has shown that it exerts various biological activities such as anti-inflammatory, antioxidant, anti-microbial, neuroprotective, anti-diabetic, anti-cancer, analgesic, anti-parasitic, and recently, it was found to work against respiratory infections like COVID-19. With the advancement in drug development, hopefully, its rich phytochemical components can be explored for drug development as an insecticide due to its great anti-parasitic activity. Also, its interactions with drugs can be fully elucidated.This review highlights an updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Commiphora myrrh. Graphical summary of the phytochemical and pharmacological update of Commiphora myrrh.


Subject(s)
COVID-19 , Oils, Volatile , Humans , Commiphora , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy
11.
Global Health ; 18(1): 103, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494695

ABSTRACT

This paper highlights the gap in the use of genomic data of Africans for global research efforts for disease cures. Genomic data represents an important tool used in disease research for understanding how diseases affect several populations and how these differences can be harnessed for the development of effective cures especially vaccines that have an impact at the genetic level e.g., RNA vaccines.This paper then provides a review of global genomic data status where three continents are reported to be the major contributor of genomic data to repositories used for disease research and the development of vaccines and medicines around the world.We reviewed the most recently published information about genetic data inclusiveness of populations, explaining how genomic data of Africans is lacking in global research efforts that cater towards the eradication of pandemics via the development of vaccines and other cures. We also discuss the implication of this non-inclusiveness for global disease burdens and indicate where changes need to be made in the last part of the paper.Lastly, the entire centers on some general policy recommendations to fully include African genomic data in such global genetic repositories. These recommendations can be implemented in African countries to improve genetic data collection, storage, and usage policies.


Subject(s)
Global Burden of Disease , Vaccines , Humans , Genomics , Pandemics , Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...