Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1149143, 2023.
Article in English | MEDLINE | ID: mdl-37205057

ABSTRACT

Objective: The aim of this study was to identify and characterize the 100 most cited articles on Parkinson's disease (PD) and phenolic compounds (PCs). Methods: Articles were selected in the Web of Science Core Collection up to June 2022 based on predetermined inclusion criteria, and the following bibliometric parameters were extracted: the number of citations, title, keywords, authors, year, study design, tested PC and therapeutic target. MapChart was used to create worldwide networks, and VOSviewer software was used to create bibliometric networks. Descriptive statistical analysis was used to identify the most researched PCs and therapeutic targets in PD. Results: The most cited article was also the oldest. The most recent article was published in 2020. Asia and China were the continent and the country with the most articles in the list (55 and 29%, respectively). In vitro studies were the most common experimental designs among the 100 most cited articles (46%). The most evaluated PC was epigallocatechin. Oxidative stress was the most studied therapeutic target. Conclusion: Despite the demonstrations in laboratorial studies, the results obtained point to the need for clinical studies to better elucidate this association.

2.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36718558

ABSTRACT

Phenolic compounds (PCs) have neuroprotective effects with potential to prevent or slower the progression of Parkinson's disease (PD). However, whether the PCs neuroprotective effects can be observed under their dietary concentrations remains unclear. Therefore, we searched for the most cited articles in density on PCs and PD in the Web of Science Core Collection and All-Database (WoS-CC/AD) and selected the articles based on our eligibility criteria. From these 81 articles selected, we extracted information on experimental design, compounds tested, concentration and/or dose administered, route of administration, and main results obtained. We compared the concentrations of PCs evaluated in vitro with the concentrations bioavailable in the human bloodstream. Further, after extrapolation to humans, we compared the doses administered to animals in vivo with the daily consumed amounts of PCs. Concentrations evaluated in 21 in vitro laboratory studies were higher than those bioavailable in the bloodstream. In the case of in vivo laboratory studies, only one study administered doses of PCs in normal daily amount. The results of the comparisons demonstrate that the neuroprotective effects of the selected articles are mainly associated with concentrations, amounts and routes of administration that do not correspond to the consumption of phenolic compounds through the diet.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36290625

ABSTRACT

Açaí (Euterpe oleracea Mart.) juice is rich in phenolic compounds with high antioxidant capacity. It has been observed that the use of antioxidants may be an additional strategy to nonsurgical periodontal therapy as well as to prevent alveolar bone loss. Thus, the objective of this study was to investigate the effects of açaí supplementation on experimental periodontitis in rats. Twenty male Rattus norvegicus (Wistar) rats were assigned into control, açaí, experimental periodontitis, and experimental periodontitis with açaí supplementation groups. Periodontitis was induced by placing ligatures around the lower first molars. Animals in the açaí groups received 0.01 mL/g of clarified açaí juice for 14 days by intragastric gavage. At the end of the experimental period, blood was collected to assess the reduced glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC), and lipid peroxidation (TBARS) levels. Moreover, hemimandibles were analyzed by micro-computed tomography (micro-CT) for alveolar bone loss and bone quality. Açaí supplementation increased blood total antioxidant capacity and decreased lipid peroxidation. It also reduced alveolar bone loss when compared to the experimental periodontitis group. Moreover, clarified açaí per se modulated the oxidative biochemistry and bone microstructure. Thus, açaí may be considered a viable alternative for managing periodontal oxidative stress and preventing alveolar bone loss.

4.
Antioxidants (Basel) ; 9(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878036

ABSTRACT

Piceatannol is a resveratrol metabolite that is considered a potent antioxidant and cytoprotector because of its high capacity to chelate/sequester reactive oxygen species. In pathogenesis of periodontal diseases, the imbalance of reactive oxygen species is closely related to the disorder in the cells and may cause changes in cellular metabolism and mitochondrial activity, which is implicated in oxidative stress status or even in cell death. In this way, this study aimed to evaluate piceatannol as cytoprotector in culture of human periodontal ligament fibroblasts through in vitro analyses of cell viability and oxidative stress parameters after oxidative stress induced as an injury simulator. Fibroblasts were seeded and divided into the following study groups: control, vehicle, control piceatannol, H2O2 exposure, and H2O2 exposure combined with the maintenance in piceatannol ranging from 0.1 to 20 µM. The parameters analyzed following exposure were cell viability by trypan blue exclusion test, general metabolism status by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method, mitochondrial activity through the ATP production, total antioxidant capacity, and reduced gluthatione. Piceatannol was shown to be cytoprotective due the maintenance of cell viability between 1 and 10 µM even in the presence of H2O2. In a concentration of 0.1 µM piceatannol decreased significantly cell viability but increased cellular metabolism and antioxidant capacity of the fibroblasts. On the other hand, the fibroblasts treated with piceatannol at 1 µM presented low metabolism and antioxidant capacity. However, piceatannol did not protect cells from mitochondrial damage as measured by ATP production. In summary, piceatannol is a potent antioxidant in low concentrations with cytoprotective capacity, but it does not prevent all damage caused by hydrogen peroxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...