Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Neurologia (Engl Ed) ; 39(5): 408-416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830720

ABSTRACT

Ataxias are characterized by aberrant movement patterns closely related to cerebellar dysfunction. Purkinje cell axons are the sole outputs from the cerebellar cortex, and dysfunctional activity of Purkinje cells has been associated with ataxic movements. However, the synaptic characteristics of Purkinje cells in cases of ataxia are not yet well understood. The nicotinamide antagonist 3-acethylpyridine (3-AP) selectively destroys inferior olivary nucleus neurons so it is widely used to induce cerebellar ataxia. Five days after 3-AP treatment (65mg/kg) in adult male Sprague-Dawley rats, motor incoordination was revealed through BBB and Rotarod testing. In addition, in Purkinje cells from lobules V-VII of the cerebellar vermis studied by the Golgi method, the density of dendritic spines decreased, especially the thin and mushroom types. Western blot analysis showed a decrease in AMPA and PSD-95 content with an increase of the α-catenin protein, while GAD-67 and synaptophysin were unchanged. Findings suggest a limited capacity of Purkinje cells to acquire and consolidate afferent excitatory inputs and an aberrant, rigid profile in the movement-related output patterns of Purkinje neurons that likely contributes to the motor-related impairments characteristic of cerebellar ataxias.


Subject(s)
Cerebellum , Purkinje Cells , Rats, Sprague-Dawley , Animals , Purkinje Cells/drug effects , Purkinje Cells/pathology , Male , Rats , Cerebellum/drug effects , Cerebellar Ataxia/chemically induced , Pyridines/pharmacology , Neuronal Plasticity/drug effects
2.
Behav Neurol ; 2021: 6651492, 2021.
Article in English | MEDLINE | ID: mdl-33833828

ABSTRACT

Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Amidohydrolases , Animals , Cell Proliferation , Corticosterone , Dentate Gyrus , Disease Models, Animal , Mice , Stress, Psychological/drug therapy
3.
Neurosci Lett ; 742: 135534, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33271195

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder, caused by the selective death of dopaminergic neurons in the substantia nigra pars compacta. ß-caryophyllene (BCP) is a phytocannabinoid with several pharmacological properties, producing anti-inflammatory and antihypertensive effects. In addition, BCP protects dopaminergic neurons from neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), yet it remains unclear if this effect is due to its antioxidant activity. To assess whether this is the case, the effect of BCP on the expression and activity of NAD(P)H quinone oxidoreductase (NQO1) was evaluated in mice after the administration of MPTP. Male C57BL/6 J mice were divided into four groups, the first of which received saline solution i.p. in equivalent volume and served as a control group. The second group received MPTP. The second group received MPTP hydrochloride (5 mg/kg, i.p.) daily for seven consecutive days. The third group received BCP (10 mg/kg) for seven days, administered orally and finally, the fourth group received MPTP as described above and BCP for 7 days from the fourth day of MPTP administration. The results showed that BCP inhibits oxidative stress-induced cell death of dopaminergic neurons exposed to MPTP at the same time as it enhances the expression and enzymatic activity of NQO1. Also, the BCP treatment ameliorated motor dysfunction and protected the dopaminergic cells of the SNpc from damage induced by MPTP. Hence, BCP appears to achieve at least some of its antioxidant effects by augmenting NQO1 activity, which protects cells from MPTP toxicity. Accordingly, this phytocannabinoid may represent a promising pharmacological option to safeguard dopaminergic neurons and prevent the progression of PD.


Subject(s)
Antioxidants/therapeutic use , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , NAD(P)H Dehydrogenase (Quinone)/biosynthesis , Polycyclic Sesquiterpenes/therapeutic use , Animals , Antioxidants/pharmacology , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Pars Compacta/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Polycyclic Sesquiterpenes/pharmacology , Random Allocation
4.
Neurologia (Engl Ed) ; 34(3): 143-152, 2019 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-28104279

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). METHODS: Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. RESULTS: Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. CONCLUSION: Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Amidohydrolases/metabolism , Dopaminergic Neurons/drug effects , Substantia Nigra/drug effects , Animals , Benzamides , Carbamates , Disease Models, Animal , Dopaminergic Neurons/pathology , Male , Mice , Mice, Inbred C57BL , Motor Skills/drug effects , Neuroprotective Agents/therapeutic use , Parkinson Disease , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase
SELECTION OF CITATIONS
SEARCH DETAIL
...