Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Nutr ; 58(5): 1887-1898, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29948216

ABSTRACT

PURPOSE: To assess the effect of the intake of a single dose of high-polyphenols cocoa on gene expression in peripheral mononuclear cells (PBMCs), and analyze conjugated (-)-epicatechin metabolites in plasma, which may be related with an antioxidant response in healthy human. METHODS: A randomized, controlled, double-blind, cross-over, clinical trial in healthy young adults who consumed a single dose of high-polyphenols cocoa powder and maltodextrins as control, with a one-week washout period. Analysis of circulating metabolites, plasma antioxidant capacity and gene expression changes in PBMCs were performed under fasting conditions and 2-h after treatment using microarray in a subsample. Pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS: Twenty healthy participants (9 F) were included in the study. A significant increase in circulating (-)-epicatechin metabolites was found after cocoa intake in all participants without related changes in antioxidant capacity of plasma. The metabolites profile slightly varied across subjects. Treatments triggered different transcriptional changes in PBMC. A group of 98 genes showed changes in expression after cocoa treatment, while only 18 were modified by control. Differentially expressed genes included inflammatory cytokines and other molecules involved in redox balance. Gene and network analysis after cocoa intake converged in functions annotated as decreased production of reactive oxygen species (p = 9.58E-04), decreased leukocyte activation (p = 4E-03) and calcium mobilization (p = 2.51E-05). CONCLUSIONS: No association was found between conjugated metabolites in plasma and antioxidant capacity. Changes in PBMCs gene expression suggest anti-inflammatory effects.


Subject(s)
Cacao , Gene Expression/drug effects , Polyphenols/pharmacology , Adult , Antigens, Tumor-Associated, Carbohydrate/blood , Cross-Over Studies , Double-Blind Method , Female , Gene Expression/physiology , Humans , Male , Polyphenols/administration & dosage , Polyphenols/blood , Reference Values
2.
Br J Nutr ; 116(6): 969-78, 2016 09.
Article in English | MEDLINE | ID: mdl-27480250

ABSTRACT

The transcription factor 7-like 2 (TCF7L2) genetic variants have shown differential effect on low-fat and high-fat diet in obese subjects. Nopal is a Mexican variety of cactus that is a traditional food and has been used in the treatment of diabetes. Its hypoglycaemic effect may be because of its soluble fibre (mucopolysaccharide) content. This study analysed the effects of the rs7903146 and rs12255372 TCF7L2 variants on anthropometric, metabolic and hormonal parameters in type 2 diabetes mellitus patients who consumed fibre from either nopal tortilla or wholegrain bread for 8 weeks. We followed-up seventy-four patients who consumed an individualised isoenergetic diet that included nopal tortilla (Diet 1) and sixty-three patients with a diet that included wholegrain bread (Diet 2). Anthropometric, metabolic and hormonal measures were collected at baseline and final intervention. The size effect and carry-over effect were estimated. To assess the interaction of genotype and diets, we used a general linear model repeated-measures analysis. Minor allele frequency of rs7903146T was 0·27 and for rs12255372T it was 0·13. At 8 weeks after Diet 1 intake, weight, BMI, waist and hip circumference decreased (P=0·00015) in rs7903146CC and rs12255372GG genotypes. In particular, patients carrying of the rs7903146CC and consuming Diet 1 showed a reduction in waist circumference of more than 2·5 cm compared with Diet 2 (P<0·001). No significant interaction between rs7903146 or rs12255372 and diet was seen in this study. In conclusion, in the carriers of the rs7903146CC and rs12255372GG wild types, significant changes in all anthropometric measures were observed, and had better response to both diets.


Subject(s)
Cactaceae/chemistry , Diabetes Mellitus, Type 2/metabolism , Diet , Dietary Fiber/pharmacology , Genetic Variation , Transcription Factor 7-Like 2 Protein/metabolism , Diabetes Mellitus, Type 2/genetics , Food Analysis , Gene Expression Regulation/physiology , Humans , Transcription Factor 7-Like 2 Protein/genetics , Triticum/chemistry
3.
J Med Primatol ; 42(3): 105-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23398349

ABSTRACT

BACKGROUND: Olfactomedin-like is a family of polyfunctional polymeric glycoproteins. This family has at least four members. One member of this family is OLFML3, which is preferentially expressed in placenta but is also detected in other adult tissues including the liver and heart. However, its orthologous rat gene is expressed in the iris, sclera, trabecular meshwork, retina, and optic nerve. METHODS: OLFML3 messenger amplification was performed by RT-PCR from human and baboon ocular tissues. The products were cloned and sequenced. RESULTS: We report OLFML3 expression in human and baboon eye. The full coding DNA sequence has 1221 bp, from which an open reading frame of 406 amino acid was obtained. The baboon OLFML3 gene nucleotidic sequence has 98% and amino acidic 99% similarity with humans. CONCLUSIONS: OLFML3 gene expression in human and baboon ocular tissues and its high similarity make the baboon a powerful model to deduce the physiological and/or metabolic function of this protein in the eye.


Subject(s)
Eye/metabolism , Glycoproteins/genetics , Papio hamadryas/genetics , Adolescent , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Child , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Glycoproteins/metabolism , Humans , Male , Middle Aged , Molecular Sequence Data , Organ Specificity , Papio hamadryas/metabolism , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Spain
4.
Nutr Metab Cardiovasc Dis ; 20(6): 405-11, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20554175

ABSTRACT

Cardiovascular disease is a leading cause of death and disability in adults in Latin America. Women are more affected by these diseases than by all forms of cancer. Latin American countries have experienced rapid and uneven socioeconomic changes with a significant effect on lifestyle, demographic and health-related indicators. Differences in methodological approaches make it difficult to compare studies and health statistics across countries in the region. According to available statistics, female population in Latin American countries have lower mortality rate from coronary heart disease and higher mortality rate from cerebrovascular disease than North America. Current rates of obesity and type 2 diabetes are alarming in female in some countries. The high prevalence of risk factors forecasts an increase in cardiovascular disease for the coming decades in this region of the world. More systematic and sustained efforts for research, education, surveillance, prevention, early detection and affordable treatment are required across all Latin American countries to improve health conditions for adult population and particularly for women, who are more affected by obesity and diabetes. This article reviews the available information on cardiovascular disease and related risk factors in Latin American countries with a focus on female and to provide a brief description of selected multinational and national efforts to study and prevent this threat.


Subject(s)
Cardiovascular Diseases/epidemiology , Women's Health , Adult , Aged , Aged, 80 and over , Aging , Cardiovascular Diseases/complications , Cardiovascular Diseases/mortality , Cardiovascular Diseases/prevention & control , Female , Genetic Predisposition to Disease , Health Promotion , Heart Diseases/epidemiology , Heart Diseases/genetics , Humans , Latin America/epidemiology , Life Style , Middle Aged , Prevalence , Risk Factors , Socioeconomic Factors
5.
Placenta ; 30(9): 752-60, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19632719

ABSTRACT

Maternal obesity is present in 20-34% of pregnant women and has been associated with both intrauterine growth restriction and large-for-gestational age fetuses. While fetal and placental functions have been extensively studied in the baboon, no data are available on the effect of maternal obesity on placental structure and function in this species. We hypothesize that maternal obesity in the baboon is associated with a maternal inflammatory state and induces structural and functional changes in the placenta. The major findings of this study were: 1) decreased placental syncytiotrophoblast amplification factor, intact syncytiotrophoblast endoplasmic reticulum structure and decreased system A placental amino acid transport in obese animals; 2) fetal serum amino acid composition and mononuclear cells (PBMC) transcriptome were different in fetuses from obese compared with non-obese animals; and 3) maternal obesity in humans and baboons is similar in regard to increased placental and adipose tissue macrophage infiltration, increased CD14 expression in maternal PBMC and maternal hyperleptinemia. In summary, these data demonstrate that in obese baboons in the absence of increased fetal weight, placental and fetal phenotype are consistent with those described for large-for-gestational age human fetuses.


Subject(s)
Adaptation, Physiological , Disease Models, Animal , Obesity , Papio , Placenta/pathology , Placenta/physiopathology , Pregnancy Complications , Amino Acid Transport System A/metabolism , Amino Acids/blood , Animals , Body Weight , Chorionic Villi/pathology , Crown-Rump Length , Female , Fetal Blood , Inflammation/metabolism , Kidney/pathology , Leptin/blood , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/analysis , Lipopolysaccharide Receptors/blood , Lipopolysaccharide Receptors/metabolism , Macrophages/pathology , Matched-Pair Analysis , Maternal-Fetal Exchange , Obesity/pathology , Obesity/physiopathology , Organ Size , Pregnancy , Pregnancy Complications/pathology , Pregnancy Complications/physiopathology , Trophoblasts/pathology
6.
Heredity (Edinb) ; 101(1): 60-6, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18446183

ABSTRACT

Resistin has been associated with inflammation and risk for cardiovascular disease. We previously reported evidence of a QTL on chromosome 19p13 affecting the abundance of resistin (RETN) mRNA in the omental adipose tissue of baboons (L0D score 3.8). In this study, whole genome transcription levels were assessed in human lymphocyte samples from 1240 adults participating in the San Antonio Family Heart Study, using the Sentrix Human-6 Expression Beadchip. Lymphocytes were surveyed, as it has been proposed that their expression levels may reflect those in harder to ascertain tissues, such as adipose tissue, that are thought to be more directly relevant to disease procesn was conducted to detect loci affecting RETN mRNA levels. We obtained significant evidence for a QTL influencing the RETN expression (LOD score 10.7) on chromosome 19p. This region is orthologous/homologous to the region previously localized on baboon chromosome 19. The strongest positional candidate gene in this region is the structural gene for resistin, itself. We also found evidence for a QTL influencing resistin protein levels (LOD score 5.3) on chromosome 14q. This differs from our previously reported QTL on chromosome 18 in baboons. The different QTLs for circulating protein suggests that post-translational processing and turnover may be influenced by different or multiple genes in baboons and humans. The parallel findings of a cis-eQTL for RETN mRNA in baboon omental tissue and human lymphocytes lends support to the strategy of using lymphocyte gene expression levels as a surrogate for gene expression levels in other tissues.


Subject(s)
Lymphocytes/chemistry , Quantitative Trait Loci , RNA, Messenger/analysis , Resistin/analysis , Resistin/genetics , Adipose Tissue/metabolism , Animals , Genome, Human , Humans , Mexican Americans , Microsatellite Repeats , Papio , Texas
7.
Heredity (Edinb) ; 100(4): 382-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18285814

ABSTRACT

To detect and localize the effects of genes influencing variation in adiponectin mRNA and protein levels, we conducted statistical genetic analyses of circulating concentrations of adiponectin and adiponectin (ADIPOQ) mRNA expression in omental adipose tissue in adult, pedigreed baboons (Papio anubis). An omental adipose tissue biopsy and blood sample were collected from 427 baboons from the colony at the Southwest Foundation for Biomedical Research, San Antonio, TX. Total RNA was isolated from adipose tissue and adiponectin mRNA levels were assayed by real-time, quantitative reverse transcriptase-PCR. Adiponectin, insulin, glucose, cholesterol, high-density lipoproteins and triglycerides were measured in fasting serum. Quantitative genetic analyses were conducted for adiponectin mRNA and serum protein using a maximum likelihood-based variance decomposition approach. A genome-wide linkage analysis was conducted using adiponectin mRNA and protein levels as phenotypes. Significant heritability was estimated for ADIPOQ mRNA levels (h2=0.19+/-0.07, P=0.01) and protein levels (h2=0.28+/-0.14, P=0.003). Genetic correlations were found between adiponectin protein and body weight (rho(G)=-0.51, P=0.03), cell volume (rho(G)=-0.73, P=0.04), serum triglycerides (rho(G)=-0.67, P=0.03), and between adiponectin mRNA and glucose (rho(G)=0.93, P<0.01). A logarithm of odds score of 2.9 was found for ADIPOQ mRNA levels on baboon chromosome 4p, which is orthologous to human 6p21. There is a significant genetic component affecting variation in the analyzed traits, and common genes may be influencing adiponectin expression, adipocyte volume, body weight and circulating triglycerides. The region on 6p21 has been linked to diabetes-related phenotypes in human studies.


Subject(s)
Adipocytes/metabolism , Adiponectin/genetics , Genetic Variation , Adipocytes/chemistry , Adiponectin/blood , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromosomes, Mammalian , Female , Genome , Humans , Male , Metabolic Diseases/genetics , Molecular Sequence Data , Papio , Quantitative Trait Loci , RNA, Messenger/metabolism , Sequence Alignment
8.
Cytokine ; 41(2): 150-4, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18164624

ABSTRACT

Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.


Subject(s)
Adipocytes/cytology , Adipokines/biosynthesis , Animals , Cell Size , Female , Interleukin-6/biosynthesis , Male , Omentum/cytology , Papio hamadryas , RNA, Messenger/metabolism
9.
Int J Obes (Lond) ; 31(3): 535-42, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16894363

ABSTRACT

INTRODUCTION: Adiponectin, a hormone produced exclusively by adipose tissue, is inversely associated with insulin resistance and proinflammatory conditions. The aim of this study was to find quantitative trait loci (QTLs) that affect circulating levels of adiponectin in Hispanic children participating in the VIVA LA FAMILIA Study by use of a systematic genome scan. METHODS: The present study included extended families with at least one overweight child between 4 and 19 years old. Overweight was defined as body mass index (BMI) 95th percentile. Fasting blood was collected from 466 children from 127 families. Adiponectin was assayed by radioimmunoassay (RIA) technique in fasting serum. A genome-wide scan on circulating levels of adiponectin as a quantitative phenotype was conducted using the variance decomposition approach. RESULTS: The highest logarithm of odds (LOD) score (4.2) was found on chromosome 11q23.2-11q24.2, and a second significant signal (LOD score=3.0) was found on chromosome 8q12.1-8q21.3. In addition, a signal suggestive of linkage (LOD score=2.5) was found between 18q21.3 and 18q22.3. After adjustment for BMI-Z score, the LOD score on chromosome 11 remained unchanged, but the signals on chromosomes 8 and 18 dropped to 1.6 and 1.7, respectively. Two other signals suggestive of linkage were found on chromosome 3 (LOD score=2.1) and 10 (LOD score=2.5). Although the region on chromosome 11 has been associated with obesity and diabetes-related traits in adult populations, this is the first observation of linkage in this region for adiponectin levels. Our suggestive linkages on chromosomes 10 and 3 replicate results for adiponectin seen in other populations. The influence of loci on chromosomes 18 and 8 on circulating adiponectin seemed to be mediated by BMI in the present study. CONCLUSION: Our genome scan in children has identified a novel QTL and replicated QTLs in chromosomal regions previously shown to be linked with obesity and type 2 diabetes (T2D)-related phenotypes in adults. The genetic contribution of loci to adiponectin levels may vary across different populations and age groups. The strong linkage signal on chromosome 11 is most likely underlain by a gene(s) that may contribute to the high susceptibility of these Hispanic children to obesity and T2D.


Subject(s)
Adiponectin/blood , Genetic Linkage/genetics , Hispanic or Latino/genetics , Obesity/genetics , Adolescent , Adult , Age Factors , Body Mass Index , Child , Child, Preschool , Chromosomes, Human/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 18/genetics , Family , Female , Genetic Markers/genetics , Humans , Male , Obesity/blood , Obesity/ethnology , Sex Factors
10.
Int J Obes (Lond) ; 29(4): 406-12, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15326464

ABSTRACT

INTRODUCTION: The hormone resistin was recently discovered in adipose tissue of mice. Functional tests suggest a role for resistin in the regulation of insulin sensitivity. However, human studies have reported controversial results on the metabolic function of this hormone. METHODS: A 1 g omental adipose tissue biopsy was obtained from 404 adult baboons. Resistin mRNA expression was assayed by real-time, quantitative RT-PCR, and univariate and bivariate quantitative genetic analyses were performed, via the variance decomposition approach. A genome scan analysis was conducted using resistin mRNA abundance in omental adipose tissue as a quantitative phenotype. RESULTS: A significant heritability of h2 = 0.23 (P = 0.003) was found for resistin mRNA abundance in omental adipose tissue. A genome scan detected a quantitative trait locus for resistin expression with an LOD score of 3.8, in the region between markers D19S431 and D19S714, corresponding to human chromosome 19 p13. This chromosomal region contains genes related to insulin resistance phenotypes, such as resistin, insulin receptor, angiopoietin-like 4 protein and LDL receptor. CONCLUSIONS: Individual variation in resistin mRNA expression has a significant genetic component, and a gene or genes on chromosome 19 p13 may regulate resistin mRNA levels in baboon omental adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Hormones, Ectopic/genetics , Omentum , Papio/metabolism , Quantitative Trait, Heritable , RNA, Messenger/analysis , Animals , Female , Genotype , Male , Models, Animal , Resistin , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...