Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pept Sci ; 22(2): 98-105, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26751806

ABSTRACT

The structure of peptide antibiotic gramicidin A (gA) was studied in phosphatidylcholin liposomes modified by nonionic detergent Triton X-100. First, the detergent : lipid ratio at which the saturation of lipid membrane by Triton X-100 occurs (Re (sat)), was determined by light scattering. Measurements of steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at sublytic concentrations of detergent showed that after saturation of the membrane by Triton X-100 microviscosity of lipid bilayer is reduced by 20%. The equilibrium conformational state of gA in phosphatidylcholine liposomes at Re (sat) was studied by CD spectroscopy. It was found that the conformational state of this channel-forming peptide changed crucially when Triton X-100 induced transition to more fluid membranes. The gA single-channel measurements were made with Triton X-100 containing bilayers. Tentative assignment of the channel type and gA structures was made by correlation of CD data with conductance histograms. Lipid-detergent system with variable viscosity developed in this work can be used to study the structure and folding of other membrane-active peptides.


Subject(s)
Anti-Bacterial Agents/chemistry , Gramicidin/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Cell Membrane/chemistry , Detergents/chemistry , Dynamic Light Scattering , Membrane Fluidity , Membrane Potentials , Octoxynol/chemistry , Glycine max/chemistry
2.
Biochem Biophys Res Commun ; 439(4): 427-32, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23998937

ABSTRACT

Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600Å(3)). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.


Subject(s)
Antigens, Plant/biosynthesis , Antigens, Plant/genetics , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Lens Plant/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Antigens, Plant/chemistry , Carrier Proteins/chemistry , Crystallography, X-Ray , Lens Plant/genetics , Models, Molecular , Molecular Weight , Plant Proteins/chemistry , Protein Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solutions
3.
Chem Biodivers ; 10(5): 838-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23681729

ABSTRACT

Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. In comparison with other 16-amino acid-residue peptaibols, e.g., zervamicin IIB (Zrv-IIB), Aam-I possesses relatively weak biological and channel-forming activities. In MeOH solution, Aam-I demonstrates fast cooperative transitions between right-handed and left-handed helical conformation of the N-terminal (1-8) region. We studied Aam-I spatial structure and backbone dynamics in the membrane-mimicking environment (DMPC/DHPC bicelles)(1) ) by heteronuclear (1) H,(13) C,(15) N-NMR spectroscopy. Interaction with the bicelles stabilizes the Aam-I right-handed helical conformation retaining significant intramolecular mobility on the ms-µs time scale. Extensive ms-µs dynamics were also detected in the DPC and DHPC micelles and DOPG nanodiscs. In contrast, Zrv-IIB in the DPC micelles demonstrates appreciably lesser mobility on the µs-ms time scale. Titration with Mn(2+) and 16-doxylstearate paramagnetic probes revealed Aam-I binding to the bicelle surface with the N-terminus slightly immersed into hydrocarbon region. Fluctuations of the Aam-I helix between surface-bound and transmembrane (TM) state were observed in the nanodisc membranes formed from the short-chain (diC12 : 0) DLPC/DLPG lipids. All the obtained experimental data are in agreement with the barrel-stave model of TM pore formation, similarly to the mechanism proposed for Zrv-IIB and other peptaibols. The observed extensive intramolecular dynamics explains the relatively low activity of Aam-I.


Subject(s)
Peptaibols/chemistry , Peptides/chemistry , Lipids/chemistry , Magnetic Resonance Spectroscopy , Micelles , Models, Molecular , Nanostructures/chemistry , Porosity , Protein Structure, Secondary , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...