Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Vet Med Assoc ; 261(4): 480-489, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36595371

ABSTRACT

OBJECTIVE: To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US. ANIMALS: 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. PROCEDURES: Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners. RESULTS: Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs. CLINICAL RELEVANCE: Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Humans , Dogs , United States/epidemiology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Zoonoses/epidemiology , Pets
2.
Vet Pathol ; 59(4): 707-711, 2022 07.
Article in English | MEDLINE | ID: mdl-35038930

ABSTRACT

Documented natural infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in exotic and companion animals following human exposures are uncommon. Those documented in animals are typically mild and self-limiting, and infected animals have only infrequently died or been euthanized. Through a coordinated One Health initiative, necropsies were conducted on 5 animals from different premises that were exposed to humans with laboratory-confirmed SARS-CoV-2 infection. The combination of epidemiologic evidence of exposure and confirmatory real-time reverse transcriptase-polymerase chain reaction testing confirmed infection in 3 cats and a tiger. A dog was a suspect case based on epidemiologic evidence of exposure but tested negative for SARS-CoV-2. Four animals had respiratory clinical signs that developed 2 to 12 days after exposure. The dog had bronchointerstitial pneumonia and the tiger had bronchopneumonia; both had syncytial-like cells with no detection of SARS-CoV-2. Individual findings in the 3 cats included metastatic mammary carcinoma, congenital renal disease, and myocardial disease. Based on the necropsy findings and a standardized algorithm, SARS-CoV-2 infection was not considered the cause of death in any of the cases. Continued surveillance and necropsy examination of animals with fatal outcomes will further our understanding of natural SARS-CoV-2 infection in animals and the potential role of the virus in development of lesions.


Subject(s)
COVID-19 , Dog Diseases , One Health , Animals , COVID-19/veterinary , Dog Diseases/diagnosis , Dogs , Pets , SARS-CoV-2
3.
Nature ; 602(7897): 481-486, 2022 02.
Article in English | MEDLINE | ID: mdl-34942632

ABSTRACT

Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.


Subject(s)
Animals, Wild/virology , COVID-19/veterinary , Deer/virology , Phylogeny , SARS-CoV-2/isolation & purification , Viral Zoonoses/transmission , Viral Zoonoses/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Humans , Male , Ohio/epidemiology , One Health/trends , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/epidemiology
4.
bioRxiv ; 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34790982

ABSTRACT

Human-to-animal spillover of SARS-CoV-2 virus has occurred in a wide range of animals, but thus far, the establishment of a new natural animal reservoir has not been detected. Here, we detected SARS-CoV-2 virus using rRT-PCR in 129 out of 360 (35.8%) free-ranging white-tailed deer ( Odocoileus virginianus ) from northeast Ohio (USA) sampled between January-March 2021. Deer in 6 locations were infected with at least 3 lineages of SARS-CoV-2 (B.1.2, B.1.596, B.1.582). The B.1.2 viruses, dominant in Ohio at the time, spilled over multiple times into deer populations in different locations. Deer-to-deer transmission may have occurred in three locations. The establishment of a natural reservoir of SARS-CoV-2 in white-tailed deer could facilitate divergent evolutionary trajectories and future spillback to humans, further complicating long-term COVID-19 control strategies. ONE-SENTENCE SUMMARY: A significant proportion of SARS-CoV-2 infection in free-ranging US white-tailed deer reveals a potential new reservoir.

5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34732584

ABSTRACT

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


Subject(s)
Deer/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/veterinary , Great Lakes Region/epidemiology , Seroepidemiologic Studies
6.
Biology (Basel) ; 10(9)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34571775

ABSTRACT

Human-to-animal and animal-to-animal transmission of SARS-CoV-2 has been documented; however, investigations into SARS-CoV-2 transmission in congregate animal settings are lacking. We investigated four animal shelters in the United States that had identified animals with exposure to shelter employees with laboratory-confirmed COVID-19. Of the 96 cats and dogs with specimens collected, only one dog had detectable SARS-CoV-2 neutralizing antibodies; no animal specimens had detectable viral RNA. These data indicate a low probability of human-to-animal transmission events in cats and dogs in shelter settings with early implementation of infection prevention interventions.

7.
Pathogens ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34451457

ABSTRACT

Vesicular stomatitis (VS) is a vector-borne livestock disease caused by vesicular stomatitis New Jersey virus (VSNJV) or vesicular stomatitis Indiana virus (VSIV). The disease circulates endemically in northern South America, Central America, and Mexico and only occasionally causes outbreaks in the United States. Over the past 20 years, VSNJV outbreaks in the southwestern and Rocky Mountain regions occurred with incursion years followed by virus overwintering and subsequent expansion outbreak years. Regulatory response by animal health officials is deployed to prevent spread from lesioned animals. The 2019 VS incursion was the largest in 40 years, lasting from June to December 2019 with 1144 VS-affected premises in 111 counties in eight states (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, Texas, Utah, and Wyoming) and was VSIV serotype, last isolated in 1998. A subsequent expansion occurred from April to October 2020 with 326 VS-affected premises in 70 counties in eight states (Arizona, Arkansas, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas). The primary serotype in 2020 was VSIV, but a separate incursion of VSNJV occurred in south Texas. Summary characteristics of the outbreaks are presented along with VSV-vector sampling results and phylogenetic analysis of VSIV isolates providing evidence of virus overwintering.

8.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33115872

ABSTRACT

Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the U.S. swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as "swine-origin" or "human-origin" due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as "swine-origin" variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source, future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts, resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and nonhuman hosts, resulting in human and nonhuman origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Pandemics/veterinary , Zoonoses/virology , Adult , Aged , Animals , Dogs , Female , Genome, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/transmission , Madin Darby Canine Kidney Cells , Male , Neuraminidase/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Phylogeny , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Swine , Viral Proteins/genetics , Zoonoses/transmission
9.
J Gen Virol ; 101(2): 175-187, 2020 02.
Article in English | MEDLINE | ID: mdl-31859611

ABSTRACT

Senecavirus A (SVA) is an emerging picornavirus that causes vesicular disease (VD) in swine. The virus has been circulating in swine in the United Stated (USA) since at least 1988, however, since 2014 a marked increase in the number of SVA outbreaks has been observed in swine worldwide. The factors that led to the emergence of SVA remain unknown. Evolutionary changes that accumulated in the SVA genome over the years may have contributed to the recent increase in disease incidence. Here we compared full-genome sequences of historical SVA strains (identified before 2010) from the USA and global contemporary SVA strains (identified after 2011). The results from the genetic analysis revealed 6.32 % genetic divergence between historical and contemporary SVA isolates. Selection pressure analysis revealed that the SVA polyprotein is undergoing selection, with four amino acid (aa) residues located in the VP1 (aa 735), 2A (aa 941), 3C (aa 1547) and 3D (aa 1850) coding regions being under positive/diversifying selection. Several aa substitutions were observed in the structural proteins (VP1, VP2 and VP3) of contemporary SVA isolates when compared to historical SVA strains. Some of these aa substitutions led to changes in the surface electrostatic potential of the structural proteins. This work provides important insights into the molecular evolution and epidemiology of SVA.


Subject(s)
Communicable Diseases, Emerging , Picornaviridae Infections/veterinary , Picornaviridae/genetics , Swine Diseases/virology , Amino Acid Substitution/genetics , Animals , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/virology , Disease Outbreaks , Evolution, Molecular , Genetic Variation , Genome, Viral , Phylogeny , Picornaviridae Infections/epidemiology , Swine , Swine Diseases/epidemiology , United States/epidemiology , Viral Proteins/genetics , Viral Structural Proteins/genetics
10.
Fish Shellfish Immunol ; 33(5): 1086-94, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22992407

ABSTRACT

The neutrophil contributes significantly to the immune response. In particular, their phagocytosis and pathogen-killing functions are vital for defense from invading pathogens. Rac2, a Rho small GTPase, is involved in many key neutrophil functions. Loss of Rac2 activity results in severe bacterial infections and neutrophil function deficits in humans and mice. While the genes rac1, 2, and 3 have been identified in the zebrafish genome, their expression has not been well-characterized. We describe rac1, 2, and 3 expression over the first three days of development, as well as the presence and localization of Rac2 protein in adult zebrafish neutrophils. The mRNA for each Rac isoform was detected in zebrafish embryos as early as 12 h post fertilization. Immunocytochemistry and confocal microscopy of adult zebrafish neutrophils confirmed diffuse Rac2 protein within the cytoplasm. Only rac2 was found in sorted neutrophil samples. Armed with knowledge of its presence and exclusive expression, the role of Rac2 in key antimicrobial zebrafish neutrophil responses was examined by small molecule inhibition of Rac during respiratory burst, NET release, and phagocytosis assays. Inhibition of Rac2 during these assays produced a dose-dependent decrease in each function, as was expected due to previous work in mammals. The expression pattern and role of Rac2 in zebrafish neutrophil function allows for comparative studies of innate immune responses in this animal model.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Immunity, Innate/genetics , Neutrophils/metabolism , Zebrafish/embryology , Zebrafish/genetics , rac GTP-Binding Proteins/metabolism , Analysis of Variance , Animals , DNA Primers/genetics , Flow Cytometry , Gene Expression Regulation, Developmental/immunology , Immunohistochemistry , Microscopy, Confocal , Neutrophils/immunology , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phagocytosis/genetics , Respiratory Burst/genetics , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/immunology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/immunology , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein
11.
J Immunol Methods ; 319(1-2): 87-97, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17208252

ABSTRACT

The zebrafish (Danio rerio) is an excellent model system for studies in developmental biology, genetics, and toxicology, and is increasingly gaining importance in the field of immunology. The use of whole zebrafish kidneys as source of neutrophils for degranulation assays and detection of neutrophil extracellular traps is described for the first time. Neutrophils from zebrafish kidneys released neutrophil extracellular traps (NETs) and myeloperoxidase (MPO) upon stimulation with calcium ionophore, phorbol myristate acetate, and beta-glucan. Immunocytochemical study of zebrafish kidney cells revealed that NETs are made of DNA fibers associated with neutrophil granular proteins, but not with cytoskeleton. Rapid, direct MPO and extracellular DNA detection assays were developed to quantify NET release and degranulation of neutrophil primary granules from whole zebrafish kidneys. The assays were used to measure the effects of acute crowding and handling stress on neutrophils, and to examine the potential for use of zebrafish whole kidney assays in evaluation of neutrophil function under different conditions in vivo. The whole kidney NET release and degranulation assays are quantitative, can rapidly measure a large number of samples, and are capable of detecting inhibition of neutrophil activity in stressed fish, overcoming the limitations that prevented use of zebrafish in the investigations of cellular innate immune function. The assays can be used as a new research model to study effects of stress, immunomodulators, toxicants, and diseases on fish neutrophil biology.


Subject(s)
Cell Degranulation/immunology , Cytoplasmic Granules/immunology , Kidney/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Neutrophils/metabolism , Zebrafish , Animals , Cytoplasmic Granules/metabolism , Extracellular Space/immunology , Extracellular Space/metabolism , Immunohistochemistry , Kidney/cytology , Kidney/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...