Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712205

ABSTRACT

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, the common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice 1 week after disruption of TGFß signaling in smooth muscle cells. Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes that was rescued by hydralazine; results were similar with angiotensin II. Changes in regulatory contractile molecule expression were not of pathological significance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically type XVIII, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure cause dissection in aortas rendered vulnerable by inhibition of TGFß-driven extracellular matrix production by smooth muscle cells. A corollary is that medial fibrosis, a frequent feature of medial degeneration, may afford some protection against aortic dissection.

2.
Article in English | MEDLINE | ID: mdl-38752350

ABSTRACT

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln± mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln± mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln± mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.

3.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746256

ABSTRACT

Smooth muscle cells (SMCs) of cardiac and neural crest origin contribute to the developing proximal aorta and are linked to disease propensity in adults. We analyzed single-cell transcriptomes of SMCs from mature thoracic aortas in mice to determine basal states and changes after disrupting transforming growth factor-ß (TGFß) signaling necessary for aortic homeostasis. A minority of Myh11 lineage-marked SMCs differentially expressed genes suggestive of embryological origin. Additional analyses in Nkx2-5 and Wnt1 lineage-marked SMCs derived from cardiac and neural crest progenitors, respectively, showed both lineages contributed to a major common cluster and each lineage to a minor distinct cluster. Common cluster SMCs extended from root to arch, cardiac subset cluster SMCs from root to mid-ascending, while neural crest subset cluster SMCs were restricted to the arch. The neural crest subset cluster had greater expression of a subgroup of TGFß-dependent genes suggesting specific responsiveness or skewed extracellular matrix synthesis. Nonetheless, deletion of TGFß receptors in SMCs resulted in similar transcriptional changes among all clusters, primarily decreased extracellular matrix molecules and modulators of TGFß signaling. Many embryological markers of murine aortic SMCs were not confirmed in adult human aortas. We conclude: (i) there are multiple subtypes of cardiac- and neural crest-derived SMCs with shared or distinctive transcriptional profiles, (ii) neural crest subset SMCs with increased expression of certain TGFß-inducible genes are not spatially linked to the aortic root predisposed to aneurysms from aberrant TGFß signaling, and (iii) loss of TGFß responses after receptor deletion is uniform among SMCs of different embryological origins.

4.
J Biomech ; : 112152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38763809

ABSTRACT

The healthy adult aorta is a remarkably resilient structure, able to resist relentless cardiac-induced and hemodynamic loads under normal conditions. Fundamental to such mechanical homeostasis is the mechano-sensitive cell signaling that controls gene products and thus the structural integrity of the wall. Mouse models have shown that smooth muscle cell-specific disruption of transforming growth factor-beta (TGFß) signaling during postnatal development compromises this resiliency, rendering the aortic wall susceptible to aneurysm and dissection under normal mechanical loading. By contrast, disruption of such signaling in the adult aorta appears to introduce a vulnerability that remains hidden under normal loading, but manifests under increased loading as experienced during hypertension. We present a multiscale (transcript to tissue) computational model to examine possible reasons for compromised mechanical homeostasis in the adult aorta following reduced TGFß signaling in smooth muscle cells.

5.
JCI Insight ; 9(9)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592807

ABSTRACT

BACKGROUNDDisease of the aorta varies from atherosclerosis to aneurysms, with complications including rupture, dissection, and poorly characterized limited tears. We studied limited tears without any mural hematoma, termed intimomedial tears, to gain insight into aortic vulnerability to excessive wall stresses. Our premise is that minimal injuries in aortas with sufficient medial resilience to prevent tear progression correspond to initial mechanisms leading to complete structural failure in aortas with significantly compromised medial resilience.METHODSIntimomedial tears were macroscopically identified in 9 of 108 ascending aortas after surgery and analyzed by histology and immunofluorescence confocal microscopy.RESULTSNonhemorrhagic, nonatheromatous tears correlated with advanced aneurysmal disease and most lacked distinctive symptoms or radiological signs. Tears traversed the intima and part of the subjacent media, while the resultant defects were partially or completely filled with neointima characterized by differentiated smooth muscle cells, scattered leukocytes, dense fibrosis, and absent elastic laminae despite tropoelastin synthesis. Healed lesions contained organized fibrin at tear edges without evidence of plasma and erythrocyte extravasation or lipid accumulation.CONCLUSIONThese findings suggest a multiphasic model of aortic wall failure in which primary lesions of intimomedial tears either heal if the media is sufficiently resilient or progress as dissection or rupture by medial delamination and tear completion, respectively. Moreover, mural incorporation of thrombus and cellular responses to injury, two historically important concepts in atheroma pathogenesis, contribute to vessel wall repair with adequate conduit function, but even together are not sufficient to induce atherosclerosis.FUNDINGNIH (R01-HL146723, R01-HL168473) and Yale Department of Surgery.


Subject(s)
Aorta , Atherosclerosis , Fibrosis , Myocytes, Smooth Muscle , Humans , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/pathology , Female , Aorta/pathology , Aged , Middle Aged , Neointima/pathology , Tunica Intima/pathology , Tunica Media/pathology , Tunica Media/metabolism
6.
Biomech Model Mechanobiol ; 23(2): 687-701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151614

ABSTRACT

Despite its vital importance for establishing proper cardiovascular function, the process through which the vasculature develops and matures postnatally remains poorly understood. From a clinical perspective, an ability to mechanistically model the developmental time course in arteries and veins, as well as to predict how various pathologies and therapeutic interventions alter the affected vessels, promises to improve treatment strategies and long-term clinical outcomes, particularly in pediatric patients suffering from congenital heart defects. In the present study, we conducted a multiscale investigation into the postnatal development of the murine thoracic aorta, examining key allometric relations as well as relationships between in vivo mechanical stresses, collagen and elastin expression, and the gradual accumulation of load-bearing constituents within the aortic wall. Our findings suggest that the production of fibrillar collagens in the developing aorta associates strongly with the ratio of circumferential stresses between systole and diastole, hence emphasizing the importance of a pulsatile mechanobiological stimulus. Moreover, rates of collagen turnover and elastic fiber compaction can be inferred directly by synthesizing transcriptional data and quantitative histological measurements of evolving collagen and elastin content. Consistent with previous studies, we also observed that wall shear stresses acting on the aorta are similar at birth and in maturity, supporting the hypothesis that at least some stress targets are established early in development and maintained thereafter, thus providing a possible homeostatic basis to guide future experiments and inform future predictive modeling.


Subject(s)
Aorta , Elastin , Infant, Newborn , Humans , Animals , Mice , Child , Elastin/metabolism , Aorta, Thoracic/pathology , Collagen/metabolism , Fibrillar Collagens/metabolism , Stress, Mechanical
8.
Front Immunol ; 14: 1248027, 2023.
Article in English | MEDLINE | ID: mdl-37915586

ABSTRACT

Introduction: Ischemia reperfusion injury (IRI) confers worsened outcomes and is an increasing clinical problem in solid organ transplantation. Previously, we identified a "PtchHi" T-cell subset that selectively received costimulatory signals from endothelial cell-derived Hedgehog (Hh) morphogens to mediate IRI-induced vascular inflammation. Methods: Here, we used multi-omics approaches and developed a humanized mouse model to resolve functional and migratory heterogeneity within the PtchHi population. Results: Hh-mediated costimulation induced oligoclonal and polyclonal expansion of clones within the PtchHi population, and we visualized three distinct subsets within inflamed, IRI-treated human skin xenografts exhibiting polyfunctional cytokine responses. One of these PtchHi subsets displayed features resembling recently described T peripheral helper cells, including elaboration of IFN-y and IL-21, expression of ICOS and PD-1, and upregulation of positioning molecules conferring recruitment and retention within peripheral but not lymphoid tissues. PtchHi T cells selectively homed to IRI-treated human skin xenografts to cause accelerated allograft loss, and Hh signaling was sufficient for this process to occur. Discussion: Our studies define functional heterogeneity among a PtchHi T-cell population implicated in IRI.


Subject(s)
Organ Transplantation , Reperfusion Injury , Mice , Animals , Humans , Cytokines , Hedgehog Proteins , Reperfusion Injury/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
9.
Science ; 381(6654): 231-239, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37440641

ABSTRACT

Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.


Subject(s)
Atrial Fibrillation , Macrophages , Osteopontin , Animals , Humans , Mice , Atrial Fibrillation/genetics , Atrial Fibrillation/immunology , Heart Atria , Macrophages/immunology , Mitral Valve Insufficiency/genetics , Osteopontin/genetics , Gene Deletion , Cell Movement , Single-Cell Gene Expression Analysis
10.
Cell Metab ; 35(7): 1163-1178.e10, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37327791

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT), a process initiated by activation of endothelial TGF-ß signaling, underlies numerous chronic vascular diseases and fibrotic states. Once induced, EndMT leads to a further increase in TGF-ß signaling, thus establishing a positive-feedback loop with EndMT leading to more EndMT. Although EndMT is understood at the cellular level, the molecular basis of TGF-ß-driven EndMT induction and persistence remains largely unknown. Here, we show that metabolic modulation of the endothelium, triggered by atypical production of acetate from glucose, underlies TGF-ß-driven EndMT. Induction of EndMT suppresses the expression of the enzyme PDK4, which leads to an increase in ACSS2-dependent Ac-CoA synthesis from pyruvate-derived acetate. This increased Ac-CoA production results in acetylation of the TGF-ß receptor ALK5 and SMADs 2 and 4 leading to activation and long-term stabilization of TGF-ß signaling. Our results establish the metabolic basis of EndMT persistence and unveil novel targets, such as ACSS2, for the potential treatment of chronic vascular diseases.


Subject(s)
Endothelial Cells , Vascular Diseases , Humans , Endothelial Cells/metabolism , Signal Transduction , Endothelium/metabolism , Transforming Growth Factor beta/metabolism , Vascular Diseases/metabolism
12.
Biomech Model Mechanobiol ; 22(4): 1333-1347, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37149823

ABSTRACT

Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.


Subject(s)
Aortic Diseases , Progeria , Child , Humans , Progeria/genetics , Progeria/metabolism , Pulse Wave Analysis , Phenotype , Aortic Diseases/metabolism , Myocytes, Smooth Muscle/metabolism
13.
Nat Commun ; 14(1): 3002, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225719

ABSTRACT

Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-ß-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.


Subject(s)
Endothelial Cells , Inflammasomes , Humans , Animals , Mice , Endosomes , Antibodies , Caspase 1 , Inflammation , Carrier Proteins/genetics , Microfilament Proteins , Trans-Activators
14.
Arterioscler Thromb Vasc Biol ; 43(5): e132-e150, 2023 05.
Article in English | MEDLINE | ID: mdl-36994727

ABSTRACT

BACKGROUND: Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5ß1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS: We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS: FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS: FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.


Subject(s)
Aortic Aneurysm, Thoracic , Marfan Syndrome , Mice , Animals , Swine , Marfan Syndrome/complications , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Integrin alpha5/therapeutic use , Fibronectins , NF-kappa B , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/prevention & control , Fibrillin-1/genetics
15.
Elife ; 122023 03 17.
Article in English | MEDLINE | ID: mdl-36930696

ABSTRACT

Clinical trials have demonstrated that lonafarnib, a farnesyltransferase inhibitor, extends the lifespan in patients afflicted by Hutchinson-Gilford progeria syndrome, a devastating condition that accelerates many characteristics of aging and results in premature death due to cardiovascular sequelae. The US Food and Drug Administration approved Zokinvy (lonafarnib) in November 2020 for treating these patients, yet a detailed examination of drug-associated effects on cardiovascular structure, properties, and function has remained wanting. In this paper, we report encouraging outcomes of daily post-weaning treatment with lonafarnib on the composition and biomechanical phenotype of elastic and muscular arteries as well as associated cardiac function in a well-accepted mouse model of progeria that exhibits severe perimorbid cardiovascular disease. Lonafarnib resulted in 100% survival of the treated progeria mice to the study end-point (time of 50% survival of untreated mice), with associated improvements in arterial structure and function working together to significantly reduce pulse wave velocity and improve left ventricular diastolic function. By contrast, neither treatment with the mTOR inhibitor rapamycin alone nor dual treatment with lonafarnib plus rapamycin improved outcomes over that achieved with lonafarnib monotherapy.


Subject(s)
Progeria , Mice , Animals , Progeria/drug therapy , Progeria/genetics , Pulse Wave Analysis , Piperidines/pharmacology , Sirolimus/therapeutic use , Lamin Type A
16.
Sci Signal ; 16(777): eabo3406, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36943921

ABSTRACT

The zinc finger protein ZFYVE21 is involved in immune signaling. Using humanized mouse models, primary human cells, and patient samples, we identified a T cell-autonomous role for ZFYVE21 in promoting chronic vascular inflammation associated with allograft vasculopathy. Ischemia-reperfusion injury (IRI) stimulated endothelial cells to produce Hedgehog (Hh) ligands, which in turn induced the production of ZFYVE21 in a population of T memory cells with high amounts of the Hh receptor PTCH1 (PTCHhi cells, CD3+CD4+CD45RO+PTCH1hiPD-1hi), vigorous recruitment to injured endothelia, and increased effector responses in vivo. After priming by interferon-γ (IFN-γ), Hh-induced ZFYVE21 activated NLRP3 inflammasome activity in T cells, which potentiated IFN-γ responses. Hh-induced NLRP3 inflammasomes and T cell-specific ZFYVE21 augmented the vascular sequelae of chronic inflammation in mice engrafted with human endothelial cells or coronary arteries that had been subjected to IRI before engraftment. Moreover, the population of PTCHhi T cells producing high amounts of ZFYVE21 was expanded in patients with renal transplant-associated IRI, and sera from these patients expanded this population in control T cells in a manner that depended on Hh signaling. We conclude that Hh-induced ZFYVE21 activates NLRP3 inflammasomes in T cells, thereby promoting chronic inflammation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Endothelial Cells/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , T-Lymphocytes/metabolism , Membrane Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
17.
Circ Cardiovasc Imaging ; 16(1): e014615, 2023 01.
Article in English | MEDLINE | ID: mdl-36649454

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) play a key role in the pathogenesis of abdominal aortic aneurysm (AAA). Imaging aortic MMP activity, especially using positron emission tomography to access high sensitivity, quantitative data, could potentially improve AAA risk stratification. Here, we describe the design, synthesis, characterization, and evaluation in murine AAA and human aortic tissue of a first-in-class MMP-targeted positron emission tomography radioligand, 64Cu-RYM2. METHODS: The broad spectrum MMP inhibitor, RYM2 was synthetized, and its potency as an MMP inhibitor was evaluated by a competitive inhibition assay. Toxicology studies were performed. Tracer biodistribution was evaluated in a murine model of AAA induced by angiotensin II infusion in Apolipoprotein E-deficient mice. 64Cu-RYM2 binding to normal and aneurysmal human aortic tissues was assessed by autoradiography. RESULTS: RYM2 functioned as an MMP inhibitor with nanomolar affinities. Toxicology studies showed no adverse reaction in mice. Upon radiolabeling with Cu-64, the resulting tracer was stable in murine and human blood in vitro. Biodistribution and metabolite analysis in mice showed rapid renal clearance and acceptable in vivo stability. In vivo positron emission tomography/computed tomography in a murine model of AAA showed a specific aortic signal, which correlated with ex vivo measured MMP activity and Cd68 gene expression. 64Cu-RYM2 specifically bound to normal and aneurysmal human aortic tissues in correlation with MMP activity. CONCLUSIONS: 64Cu-RYM2 is a first-in-class MMP-targeted positron emission tomography tracer with favorable stability, biodistribution, performance in preclinical AAA, and importantly, specific binding to human tissues. These data set the stage for 64Cu-RYM2-based translational imaging studies of vessel wall MMP activity, and indirectly, inflammation, in AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Copper Radioisotopes , Humans , Mice , Animals , Matrix Metalloproteinase Inhibitors/adverse effects , Disease Models, Animal , Tissue Distribution , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/genetics , Positron-Emission Tomography/methods , Matrix Metalloproteinases/metabolism
18.
bioRxiv ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711514

ABSTRACT

Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end of life. We associate progressive deterioration of arterial structure and function with single cell transcriptional changes, which reveals a rapid disease process in proximal elastic arteries that largely spares distal muscular arteries. These data suggest a novel sequence of progressive vascular disease in progeria: initial extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death in proximal arteries, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotypic modulation that results in an accumulation of proteoglycans that thickens the wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased pulse wave velocity drives left ventricular diastolic dysfunction, the primary diagnosis in progeria children. Mitigating smooth muscle cell loss / phenotypic modulation promises to have important cardiovascular implications in progeria patients.

19.
Circulation ; 147(5): 388-408, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36416142

ABSTRACT

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Atherosclerosis/pathology , Hydroxycholesterols/metabolism , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Cholesterol , Inflammation/metabolism , Mice, Knockout
20.
Arterioscler Thromb Vasc Biol ; 42(8): 973-986, 2022 08.
Article in English | MEDLINE | ID: mdl-35770665

ABSTRACT

BACKGROUND: Thoracic aortopathy associates with extracellular matrix remodeling and altered biomechanical properties. We sought to quantify the natural history of thoracic aortopathy in a common mouse model and to correlate measures of wall remodeling such as aortic dilatation or localized mural defects with evolving microstructural composition and biomechanical properties of the wall. METHODS: We combined a high-resolution multimodality imaging approach (panoramic digital image correlation and optical coherence tomography) with histopathologic examinations and biaxial mechanical testing to correlate spatially, for the first time, macroscopic mural defects and medial degeneration within the ascending aorta with local changes in aortic wall composition and mechanical properties. RESULTS: Findings revealed strong correlations between local decreases in elastic energy storage and increases in circumferential material stiffness with increasing proximal aortic diameter and especially mural defect size. Mural defects tended to exhibit a pronounced biomechanical dysfunction that is driven by an altered organization of collagen and elastic fibers. CONCLUSIONS: While aneurysmal dilatation is often observed within particular segments of the aorta, dissection and rupture initiate as highly localized mechanical failures. We show that wall composition and material properties are compromised in regions of local mural defects, which further increases the dilatation and overall structural vulnerability of the wall. Identification of therapies focused on promoting robust collagen accumulation may protect the wall from these vulnerabilities and limit the incidence of dissection and rupture.


Subject(s)
Angiotensin II , Aortic Aneurysm, Thoracic , Animals , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Biomechanical Phenomena , Collagen , Dilatation , Dilatation, Pathologic/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...