Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Clin Pharmacol ; 64(1): 67-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691236

ABSTRACT

Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.


Subject(s)
Interleukin-15 , Janus Kinase 3 , Humans , Agammaglobulinaemia Tyrosine Kinase , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Immunologic Factors
2.
Front Immunol ; 14: 1243556, 2023.
Article in English | MEDLINE | ID: mdl-38022501

ABSTRACT

Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.


Subject(s)
Alopecia Areata , Autoimmune Diseases , Janus Kinase Inhibitors , Humans , Alopecia Areata/drug therapy , CD8-Positive T-Lymphocytes/pathology , Autoantigens , Janus Kinase Inhibitors/therapeutic use
3.
Drug Metab Dispos ; 50(8): 1106-1118, 2022 08.
Article in English | MEDLINE | ID: mdl-35701182

ABSTRACT

Abrocitinib is an oral once-daily Janus kinase 1 selective inhibitor being developed for the treatment of moderate-to-severe atopic dermatitis. This study examined the disposition of abrocitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite (M) profiles. The results indicated abrocitinib had a systemic clearance of 64.2 L/h, a steady-state volume of distribution of 100 L, extent of absorption >90%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 60%. The half-life of both abrocitinib and total radioactivity was similar, with no indication of metabolite accumulation. Abrocitinib was the main circulating drug species in plasma (∼26%), with 3 major monohydroxylated metabolites (M1, M2, and M4) at >10%. Oxidative metabolism was the primary route of elimination for abrocitinib, with the greatest disposition of radioactivity shown in the urine (∼85%). In vitro phenotyping indicated abrocitinib cytochrome P450 fraction of metabolism assignments of 0.53 for CYP2C19, 0.30 for CYP2C9, 0.11 for CYP3A4, and ∼0.06 for CYP2B6. The principal systemic metabolites M1, M2, and M4 were primarily cleared renally. Abrocitinib, M1, and M2 showed pharmacology with similar Janus kinase 1 selectivity, whereas M4 was inactive. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of abrocitinib, a Janus kinase inhibitor for atopic dermatitis, in humans, as well as characterization of clearance pathways and pharmacokinetics of abrocitinib and its metabolites.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Pyrimidines , Sulfonamides , Administration, Oral , Dermatitis, Atopic/drug therapy , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/administration & dosage , Janus Kinase Inhibitors/pharmacokinetics , Janus Kinase Inhibitors/pharmacology , Male , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
5.
J Clin Gastroenterol ; 55(3): 195-206, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32740098

ABSTRACT

This article reviews therapeutic drug monitoring (TDM) use for current inflammatory bowel disease (IBD) treatments. IBD comprises Crohn's disease and ulcerative colitis-chronic gastrointestinal inflammatory disorders. Treatment options for moderate to severe IBD include thiopurines; methotrexate; biologic agents targeting tumor necrosis factor, α4ß7 integrin or interleukins 12 and 23; and Janus kinase inhibitors. TDM is recommended to guide treatment decisions for some of these agents. Published literature concerning TDM for IBD treatments was reviewed. S.D.L., R.S., and E.V.L. drew on their clinical experiences. Polymorphisms resulting in altered enzymatic activity inactivating thiopurine metabolites can lead to myelotoxicity and hepatotoxicity. Increased elimination of biologic agents can result from immunogenicity or higher disease activity, leading to low drug concentration and consequent nonresponse or loss of response. TDM may aid treatment and dose decisions for individual patients, based on monitoring metabolite levels for thiopurines, or serum drug trough concentration and antidrug antibody levels for biologic agents. Challenges remain around TDM implementation in IBD, including the lack of uniform assay methods and guidance for interpreting results. The Janus kinase inhibitor tofacitinib is not impacted by enzyme polymorphisms or disease activity, and is not expected to stimulate the formation of neutralizing antidrug antibodies. TDM is associated with implementation challenges, despite the recommendation of its use for guiding many IBD treatments. Newer small molecules with less susceptibility to patient variability factors may fulfill the unmet need of treatment options that do not require TDM, although further study is required to confirm this.


Subject(s)
Drug Monitoring , Inflammatory Bowel Diseases , Gastrointestinal Agents/adverse effects , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-12 , Tumor Necrosis Factor-alpha
6.
Bioorg Med Chem ; 29: 115865, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33285410

ABSTRACT

Recent years have seen a resurgence in drug discovery efforts aimed at the identification of covalent inhibitors which has led to an explosion of literature reports in this area and most importantly new approved therapies. These reports and breakthroughs highlight the significant investments made across the industry in SAR campaigns to optimize inhibitors. The potency of covalent inhibitors is generally considered to be more accurately described by the time-independent kinetic parameter kinact/Ki rather than a by a simple IC50 since the latter is a time-dependent parameter. Enzyme substrate concentrations are an additional important factor to consider when attempting to translate parameters derived from enzymology experiments to phenotypic behavior in a physiologically relevant cell-based system. Theoretical and experimental investigations into the relationship between IC50, time, substrate concentration and Kinact/Ki provided us with an effective approach to provide meaningful data for SAR optimization. The data we generated for our JAK3 irreversible covalent inhibitor program using IC50 values provided by enzyme assays with long incubations (>1h) coupled with physiological substrate concentration provided the medicinal chemist with optimal information in a rapid and efficient manner. We further document the wide applicability of this method by applying it to other enzymes systems where we have run covalent inhibitor programs.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Janus Kinase 3/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemistry , Recombinant Proteins , Structure-Activity Relationship
7.
Pharmacol Res Perspect ; 7(6): e00537, 2019 12.
Article in English | MEDLINE | ID: mdl-31832202

ABSTRACT

Janus kinase (JAK) inhibitors have emerged as an effective class of therapies for various inflammatory diseases such as rheumatoid arthritis (RA). JAK inhibitors function intracellularly by modulating the catalytic activity of JAKs and disrupting the receptor-mediated signaling of multiple cytokines and growth factors, including those with pro-inflammatory activity. Understanding the inhibition profiles of different JAK inhibitors, based on the associated cytokine receptors and downstream inflammatory pathways affected, is important to identify the potential mechanisms for observed differences in efficacy and safety. This study applied an integrated modeling approach, using in vitro whole blood cytokine inhibition potencies and plasma pharmacokinetics, to determine JAK-dependent cytokine receptor inhibition profiles, in the context of doses estimated to provide a similar clinical response in RA clinical trials. The calculated profiles of cytokine receptor inhibition for the JAK inhibitors tofacitinib, baricitinib, upadacitinib, and filgotinib and its metabolite, were generally similar when clinically efficacious doses for RA were considered. Only minor numerical differences in percentage cytokine receptor inhibition were observed, suggesting limited differentiation of these inhibitors based on JAK pharmacology, with each showing a differential selectivity for JAK1 heterodimer inhibition. Nevertheless, only robust clinical testing involving head-to-head studies will ultimately determine whether there are clinically meaningful differences between these JAK inhibitors. Furthermore, ongoing and future research into inhibitors with alternative JAK selectivity remains of clinical importance. Thus, all JAK inhibitors should be characterized via thorough preclinical, metabolic and pharmacological evaluation, adequate long-term clinical data, and when available, real-world experience.


Subject(s)
Antirheumatic Agents/pharmacology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Receptors, Cytokine/antagonists & inhibitors , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Azetidines/pharmacology , Azetidines/therapeutic use , Cell Line , Cytokines/metabolism , Enzyme Assays , Female , Healthy Volunteers , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Inhibitory Concentration 50 , Janus Kinase 1/metabolism , Janus Kinase Inhibitors/therapeutic use , Male , Piperidines/pharmacology , Piperidines/therapeutic use , Purines , Pyrazoles , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Receptors, Cytokine/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use
8.
ACS Chem Biol ; 14(6): 1235-1242, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31082193

ABSTRACT

PF-06651600 was developed as an irreversible inhibitor of JAK3 with selectivity over the other three JAK isoforms. A high level of selectivity toward JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. Importantly, 10 other kinases in the kinome have a cysteine at the equivalent position of Cys-909 in JAK3. Five of those kinases belong to the TEC kinase family including BTK, BMX, ITK, RLK, and TEC and are also inhibited by PF-06651600. Preclinical data demonstrate that inhibition of the cytolytic function of CD8+ T cells and NK cells by PF-06651600 is driven by the inhibition of TEC kinases. On the basis of the underlying pathophysiology of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, alopecia areata, and vitiligo, the dual activity of PF-06651600 toward JAK3 and the TEC kinase family may provide a beneficial inhibitory profile for therapeutic intervention.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Mice
9.
Rheumatology (Oxford) ; 58(2): 197-205, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29618084

ABSTRACT

The pathogenesis of SpA is multifactorial and involves a range of immune cell types and cytokines, many of which utilize Janus kinase (JAK) pathways for signaling. In this review, we summarize the animal and pre-clinical data that have demonstrated the effects of JAK blockade on the underlying molecular mechanisms of SpA and provide a rationale for JAK inhibition for the treatment of SpA. We also review the available clinical trial data evaluating JAK inhibitors tofacitinib, baricitinib, peficitinib, filgotinib and upadacitinib in PsA, AS and related inflammatory diseases, which have demonstrated the efficacy of these agents across a range of SpA-associated disease manifestations. The available clinical trial data, supported by pre-clinical animal model studies demonstrate that JAK inhibition is a promising therapeutic strategy for the treatment of SpA and may offer the potential for improvements in multiple articular and extra-articular disease manifestations of PsA and AS.


Subject(s)
Antirheumatic Agents/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Spondylarthritis/drug therapy , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/immunology , Cytokines/immunology , Humans , Janus Kinases/immunology , STAT Transcription Factors/immunology , Signal Transduction/immunology , Spondylarthritis/immunology
10.
J Med Chem ; 61(23): 10665-10699, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30423248

ABSTRACT

Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.


Subject(s)
Cyanamide/chemistry , Cyanamide/pharmacology , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Cyanamide/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 3/chemistry , Male , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Rats , Tissue Distribution
11.
J Med Chem ; 61(19): 8597-8612, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30113844

ABSTRACT

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling. Intervention with monoclonal antibodies (mAbs) or JAK1 inhibitors has demonstrated efficacy in Phase III psoriasis, psoriatic arthritis, inflammatory bowel disease, and rheumatoid arthritis studies, leading to multiple drug approvals. We hypothesized that a dual JAK1/TYK2 inhibitor will provide additional efficacy, while managing risk by optimizing selectivity against JAK2 driven hematopoietic changes. Our program began with a conformationally constrained piperazinyl-pyrimidine Type 1 ATP site inhibitor, subsequent work led to the discovery of PF-06700841 (compound 23), which is in Phase II clinical development (NCT02969018, NCT02958865, NCT03395184, and NCT02974868).


Subject(s)
Antitubercular Agents/pharmacology , Arthritis, Experimental/prevention & control , Janus Kinase 1/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Tuberculosis/complications , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/microbiology , Female , Molecular Structure , Rats , Rats, Inbred Lew , Tuberculosis/microbiology
12.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29298069

ABSTRACT

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cyclobutanes/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Arthritis, Experimental/drug therapy , Cyclobutanes/chemistry , Cyclobutanes/pharmacokinetics , Cyclobutanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Tissue Distribution
13.
ACS Chem Biol ; 12(12): 2970-2974, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29088528

ABSTRACT

Biochemical screening is a major source of lead generation for novel targets. However, during the process of small molecule lead optimization, compounds with excellent biochemical activity may show poor cellular potency, making structure-activity relationships difficult to decipher. This may be due to low membrane permeability of the molecule, resulting in insufficient intracellular drug concentration. The Cell Squeeze platform increases permeability regardless of compound structure by mechanically disrupting the membrane, which can overcome permeability limitations and bridge the gap between biochemical and cellular studies. In this study, we show that poorly permeable Janus kinase (JAK) inhibitors are delivered into primary cells using Cell Squeeze, inhibiting up to 90% of the JAK pathway, while incubation of JAK inhibitors with or without electroporation had no significant effect. We believe this robust intracellular delivery approach could enable more effective lead optimization and deepen our understanding of target engagement by small molecules and functional probes.


Subject(s)
Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Lab-On-A-Chip Devices , Leukocytes, Mononuclear/drug effects , Cell Membrane , Cells, Cultured , Humans , Janus Kinase Inhibitors/chemistry , Leukocytes, Mononuclear/physiology , Molecular Structure , Structure-Activity Relationship
14.
J Med Chem ; 60(5): 1971-1993, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28139931

ABSTRACT

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Signal Transduction/drug effects , Administration, Oral , Drug Design , Humans , Janus Kinase 3/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrroles/administration & dosage , Pyrroles/pharmacology
15.
ACS Chem Biol ; 11(12): 3442-3451, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27791347

ABSTRACT

PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Arthritis, Experimental/immunology , Disease Models, Animal , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/immunology , Interleukin-1beta/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology
16.
Proc Natl Acad Sci U S A ; 113(35): 9852-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27516546

ABSTRACT

Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics.


Subject(s)
Cytokines/metabolism , Janus Kinase Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cytokines/genetics , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/immunology , Immunogenetic Phenomena/drug effects , Immunogenetic Phenomena/genetics , Janus Kinases/genetics , Janus Kinases/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/immunology
17.
Clin Exp Rheumatol ; 34(2): 318-28, 2016.
Article in English | MEDLINE | ID: mdl-26966791

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterised by infiltration of immune cells into the affected synovium, release of inflammatory cytokines and degradative mediators, and subsequent joint damage. Both innate and adaptive arms of the immune response play a role, with activation of immune cells leading to dysregulated expression of inflammatory cytokines. Cytokines work within a complex regulatory network in RA, signalling through different intracellular kinase pathways to modulate recruitment, activation and function of immune cells and other leukocytes. As our understanding of RA has advanced, intracellular signalling pathways such as Janus kinase (JAK) pathways have emerged as key hubs in the cytokine network and, therefore, important as therapeutic targets. Tofacitinib is an oral JAK inhibitor for the treatment of RA. Tofacitinib is a targeted small molecule, and an innovative advance in RA therapy, which modulates cytokines critical to the progression of immune and inflammatory responses. Herein we describe the mechanism of action of tofacitinib and the impact of JAK inhibition on the immune and inflammatory responses in RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Janus Kinases/antagonists & inhibitors , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Arthritis, Rheumatoid/immunology , Cytokines/physiology , Humans , Janus Kinases/physiology , Lymphocyte Subsets/drug effects , Neutrophils/drug effects , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Signal Transduction/physiology
18.
Cell ; 164(3): 564-78, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824662

ABSTRACT

Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry.


Subject(s)
Gene Regulatory Networks , Interferon Type I/immunology , Interferon Type I/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Datasets as Topic , Humans , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism
19.
Am J Physiol Gastrointest Liver Physiol ; 310(3): G155-62, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26608188

ABSTRACT

The inflammatory diseases ulcerative colitis and Crohn's disease constitute the two main forms of inflammatory bowel disease (IBD). They are characterized by chronic, relapsing inflammation of the gastrointestinal tract, significantly impacting on patient quality of life and often requiring prolonged treatment. Existing therapies for IBD are not effective for all patients, and an unmet need exists for additional therapies to induce and maintain remission. Here we describe the mechanism of action of the Janus kinase (JAK) inhibitor, tofacitinib, for the treatment of IBD and the effect of JAK inhibition on the chronic cycle of inflammation that is characteristic of the disease. The pathogenesis of IBD involves a dysfunctional response from the innate and adaptive immune system, resulting in overexpression of multiple inflammatory cytokines, many of which signal through JAKs. Thus JAK inhibition allows multiple cytokine signaling pathways to be targeted and is expected to modulate the innate and adaptive immune response in IBD, thereby interrupting the cycle of inflammation. Tofacitinib is an oral, small molecule JAK inhibitor that is being investigated as a targeted immunomodulator for IBD. Clinical development of tofacitinib and other JAK inhibitors is ongoing, with the aspiration of providing new treatment options for IBD that have the potential to deliver prolonged efficacy and clinically meaningful patient benefits.


Subject(s)
Cytokines/metabolism , Inflammatory Bowel Diseases/drug therapy , Janus Kinases/antagonists & inhibitors , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Adaptive Immunity , Animals , Humans , Immunity, Innate , Inflammatory Bowel Diseases/metabolism , Signal Transduction/drug effects
20.
ACS Chem Biol ; 9(7): 1552-8, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24814050

ABSTRACT

Kinases constitute an important class of therapeutic targets being explored both by academia and the pharmaceutical industry. The major focus of this effort was directed toward the identification of ATP competitive inhibitors. Although it has long been recognized that the intracellular concentration of ATP is very different from the concentrations utilized in biochemical enzyme assays, little thought has been devoted to incorporating this discrepancy into our understanding of translation from enzyme inhibition to cellular function. Significant work has been dedicated to the discovery of JAK kinase inhibitors; however, a disconnect between enzyme and cellular function is prominently displayed in the literature for this class of inhibitors. Herein, we demonstrate utilizing the four JAK family members that the difference in the ATP Km of each individual kinase has a significant impact on the enzyme to cell inhibition translation. We evaluated a large number of JAK inhibitors in enzymatic assays utilizing either 1 mM ATP or Km ATP for the four isoforms as well as in primary cell assays. This data set provided the opportunity to examine individual kinase contributions to the heterodimeric kinase complexes mediating cellular signaling. In contrast to a recent study, we demonstrate that for IL-15 cytokine signaling it is sufficient to inhibit either JAK1 or JAK3 to fully inhibit downstream STAT5 phosphorylation. This additional data thus provides a critical piece of information explaining why JAK1 has incorrectly been thought to have a dominant role over JAK3. Beyond enabling a deeper understanding of JAK signaling, conducting similar analyses for other kinases by taking into account potency at high ATP rather than Km ATP may provide crucial insights into a compound's activity and selectivity in cellular contexts.


Subject(s)
Adenosine Triphosphate/metabolism , Janus Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Humans , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemistry , STAT5 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...