Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39096758

ABSTRACT

Spider venom is a natural source of diverse biomolecules, but due to technical limitations, only a small fraction has been studied. With the advancement of omics technologies, research on spider venom has broadened, greatly promoting systematic studies of spider venom. Agelena limbata is a common spider found in vegetation, known for constructing funnel-shaped webs, and feeding on insects such as Diptera and Homoptera. However, due to its small size and the difficulty in obtaining venom, the composition of Agelena limbata venom has never been studied. In this study, a transcriptomics approach was used to analyze the toxin components in the venom of Agelena limbata, resulting in the identification of 28 novel toxin-like sequences and 24 peptidases. Based on sequence similarity and differences in cysteine motifs, the 28-novel toxin-like sequences were classified into 10 superfamilies. According to the results annotated in the database, the 24 peptidases were divided into six distinct families, with the serine protease family being the most common. A phylogenetic tree was constructed using the toxin-like sequences of Agelena limbata along with Psechrus triangulus and Hippasa lycosina. An analysis of the structural domains and motifs of Agelena limbata was also conducted. The results indicated that Agelena limbata is more distantly related to the other two species of funnel-web spiders, and that the toxin superfamily IX has a unique function compared to the other superfamilies. This study reveals the components of the Agelena limbata venom, deepening our understanding of it, and through bioinformatics analysis, has identified unique functions of the toxin superfamilies, providing a scientific basis for the development of bioactive drugs in the future.

2.
Front Plant Sci ; 15: 1404071, 2024.
Article in English | MEDLINE | ID: mdl-38887455

ABSTRACT

Backgrounds: Prunus mume in the Rosaceae and commonly referred to as mei or Chinese plum is widely used as a traditional ornamental flowering plant and fruit tree in China. Although some population and genetic analyses have been conducted for this species, no extensive comparisons of genetic variation from plastomes have yet been investigated. Methods: We de novo assembled a total of 322 complete P. mume plastomes in this study and did a series of comparative analyses to better resolve pan-plastomic patterns of P. mume. To determine the phylogeny and domestication history of this species, we reconstructed the phylogenetic tree of Prunus genus, and resolved the population structure of P. mume. We also examined the nucleotide variation of P. mume to find potential DNA barcodes. Results: The assembled plastomes exhibited a typical quadripartite structure and ranged from 157,871 bp to 158,213 bp in total size with a GC content ranging from 36.73 to 36.75%. A total of 112 unique genes were identified. Single nucleotide variants (SNVs) were the most common variants found among the plastomes, followed by nucleotide insertions/deletions (InDels), and block substitutions with the intergenic spacer (IGS) regions containing the greatest number of variants. From the pan-plastome data six well-supported genetic clusters were resolved using multiple different population structure analyses. The different cultivars were unevenly distributed among multiple clades. We also reconstructed a phylogeny for multiple species of Prunus to better understand genus level diversity and history from which a complex introgressive relationship between mei and other apricots/plums was resolved. Conclusion: This study constructed the pan-plastome of P. mume, which indicated the domestication of P. mume involved multiple genetic origins and possible matrilineal introgression from other species. The phylogenetic analysis in Prunus and the population structure of P. mume provide an important maternal history for Prunus and the groundwork for future studies on intergenomic sequence transfers, cytonuclear incompatibility, and conservation genetics.

3.
Sci Rep ; 14(1): 10803, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734771

ABSTRACT

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Subject(s)
Introduced Species , Wasps , Animals , North America , Wasps/genetics , Genetics, Population , Genomics/methods , Genetic Variation , Inbreeding , Genome, Insect
4.
Int J Biol Macromol ; 268(Pt 2): 131780, 2024 May.
Article in English | MEDLINE | ID: mdl-38657926

ABSTRACT

Macrothelidae is a family of mygalomorph spiders containing the extant genera Macrothele and Vacrothele. China is an important center of diversity for Macrothele with 65 % of the known species occurring there. Previous work on Macrothele was able to uncover several important toxin compounds including Raventoxin which may have applications in biomedicine and agricultural chemistry. Despite the importance of Macrothele spiders, high-quality reference genomes are still lacking, which hinders our understanding and application of the toxin compounds. In this study, we assembled the genome of the Macrothele yani to help fill gaps in our understanding of toxin biology in this lineage of spiders to encourage the future study and applications of these compounds. The final assembled genome was 6.79 Gb in total length, had a contig N50 of 21.44 Mb, and scaffold N50 of 156.16 Mb. Hi-C scaffolding assigned 98.19 % of the genome to 46 pseudo-chromosomes with a BUSCO score of 95.7 % for the core eukaryotic gene set. The assembled genome was found to contain 75.62 % repetitive DNA and a total of 39,687 protein-coding genes were annotated making it the spider genome with highest number of genes. Through integrated analysis of venom gland transcriptomics and venom proteomics, a total of 194 venom toxins were identified, including 38 disulfide-rich peptide neurotoxins, among which 12 were ICK knottin peptides. In summary, we present the first high-quality genome assembly at the chromosomal level for any Macrothelidae spider, filling an important gap in our knowledge of these spiders. Such high-quality genomic data will be invaluable as a reference in resolving Araneae spider phylogenies and in screening different spider species for novel compounds applicable to numerous medical and agricultural applications.


Subject(s)
Genome , Proteome , Spider Venoms , Spiders , Animals , Molecular Sequence Annotation , Phylogeny , Spider Venoms/genetics , Spider Venoms/chemistry , Spiders/genetics , Spiders/classification
5.
Trends Plant Sci ; 29(7): 754-769, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38220520

ABSTRACT

Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.


Subject(s)
Genome, Plant , Genome, Plant/genetics , Gene Editing/methods , Plants/genetics , Organelles/genetics , Plastids/genetics , Mitochondria/genetics , Evolution, Molecular , CRISPR-Cas Systems
6.
BMC Plant Biol ; 24(1): 44, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200455

ABSTRACT

BACKGROUND: Hemerocallis citrina Baroni (Huang hua cai in Chinese) is a perennial herbaceous plant grown for its flower buds that are eaten fresh or dried and is known as the vegetarian three treasures. The nuclear genome of H. citrina has been reported, but the intraspecific variation of the plastome (plastid genome) has not yet been studied. Therefore, the panplastome of this species collected from diverse locations is reported here for the first time. RESULTS: In this study, 65 H. citrina samples were resequenced, de novo assembled, and aligned with the published plastome of H. citrina to resolve the H. citrina panplastome. The sizes of the 65 newly assembled complete plastomes of H. citrina ranged from 156,048 bp to 156,263 bp, and the total GC content ranged from 37.31 to 37.34%. The structure of the complete plastomes showed a typical tetrameric structure, including a large single copy (LSC), a small single copy (SSC), and a pair of inverted repeat regions (IRA and IRB). Many nucleotide variants were identified between plastomes, among which the variants in the intergenic spacer region were the most abundant, with the highest number of variants concentrated in the LSC region. Based on the phylogenetic tree constructed using the ML method, population structure analysis, and principal component analysis (PCA), the panplastome data were subdivided into five genetic clusters. The C5 genetic cluster was mostly represented by samples from Qidong, Hunan Province, while samples from Shanxi and Shaanxi Provinces were classified into the C4 genetic cluster. The greatest genetic diversity was found in the C1 genetic cluster, and the greatest genetic distance between any two clusters was found between the C4 and C5 clusters. CONCLUSION: The resolution of the panplastome and the analysis of the population structure of H. citrina plastomes provide important data for future breeding projects and germplasm preservation.


Subject(s)
Hemerocallis , Phylogeny , Plant Breeding , DNA, Intergenic , Genetic Variation , Plants, Edible
7.
Mol Hortic ; 3(1): 27, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105261

ABSTRACT

Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.

8.
Front Insect Sci ; 3: 1134781, 2023.
Article in English | MEDLINE | ID: mdl-38469507

ABSTRACT

The northern giant hornet, Vespa mandarinia (Hymenoptera: Vespidae), was detected for the first time in North America in 2019. Four nests have since been located and removed in northwestern Washington State as part of an extensive survey and eradication program. This recent introduction into North America has prompted new research on the biology and ecology of V. mandarinia to help inform management strategies. In its native range, V. mandarinia is known to prey on a variety of insects including the economically important honey bee species Apis cerana and Apis mellifera. Although A. cerana has developed defense mechanisms against attack by V. mandarinia, A. mellifera have no such defenses and an entire hive can be quickly destroyed by only a few hornets. In North America the hornet has been observed foraging on paper wasps (Polistes dominula) and honey bees, but little else is known about prey use in its novel range. To address this knowledge gap, we employed a DNA metabarcoding approach to characterize species detected in larval feces collected from 3 of the 4 Washington V. mandarinia nests found to date. Sequences were recovered for 56 species across fourteen orders, of which 36 species were likely prey items and 20 were suspected inquilines. The most frequently detected species were other social Hymenoptera, with Dolichovespula maculata, P. dominula, and A. mellifera present in most samples. All of the species detected, except for A. mellifera, represent new prey records for V. mandarinia, with eight families of insects newly associated with giant hornets. These results suggest that V. mandarinia in Washington preys on an assortment of insects similar to those documented in its native range, and that this new invader has readily incorporated novel species into its foraging and diet.

9.
Front Insect Sci ; 3: 1168586, 2023.
Article in English | MEDLINE | ID: mdl-38469542

ABSTRACT

Diabrotica undecimpunctata is a multivoltine polyphagous beetle species that has long been documented as a significant agricultural pest throughout its native range in North America. This beetle can vector bacterial and viral plant pathogens that result in major losses to crops such as cucumber and soybean. Many countries outside the Americas treat D. undecimpunctata as a species of quarantine importance, while in the USA only the subspecies D. u. duodecimnotata is subject to quarantine, to prevent introduction from Mexico. Identification of D. undecimpunctata on the basis of morphology alone can be complicated given the use of conflicting characters in the description of some subspecific taxa. To better understand relationships among D. undecimpunctata subspecies and other related species, we sequenced mitochondrial cytochrome oxidase 1 (CO1) and nuclear internal transcribed spacer 2 (ITS2) DNA from individuals in different subspecific taxa and across different parts of the species range using museum samples and interceptions. When our data were combined with publicly available Diabrotica data, no pattern of divergence consistent with the currently recognized subspecific designations was found. In addition, we compared phylogenetic patterns in CO1 data from the congener D. virgifera to demonstrate the utility of mitochondrial data in resolving subspecies. From the CO1 data, a diagnostic real-time PCR assay was developed that could successfully identify all haplotypes within the large D. undecimpunctata clade for use in surveys and identification at ports of entry. These findings underscore the need to resolve molecular and morphological datasets into cogent, lineage-based groupings. Such efforts will provide an evolutionary context for the study of agriculturally important attributes of Diabrotica such as host preferences, xenobiotic metabolism, and natural and anthropogenic patterns of dispersal.

SELECTION OF CITATIONS
SEARCH DETAIL