Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 21(5): 889-896, 2024 May.
Article in English | MEDLINE | ID: mdl-38580844

ABSTRACT

The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.


Subject(s)
Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Humans , Spheroids, Cellular , Lighting/methods , Luminescent Proteins/metabolism , Luminescent Proteins/chemistry , Green Fluorescent Proteins/metabolism
2.
Opt Express ; 31(17): 28503-28514, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710903

ABSTRACT

Adaptive optics (AO) techniques enhance the capability of optical microscopy through precise control of wavefront modulations to compensate phase aberrations and improves image quality. However, the aberration correction is often limited due to the lack of dynamic range in existing calibration methods, such as interferometry or Shack-Hartmann (SH) wavefront sensors. Here, we use deflectometry (DF) as a calibration method for a deformable mirror (DM) to extend the available range of aberration correction. We characterised the dynamic range and accuracy of the DF-based calibration of DMs depending on the spatial frequency of the test pattern used in DF. We also demonstrated the capability of large magnitude phase control for remote-focusing over a range larger than was possible with SH sensing.

3.
Opt Express ; 30(8): 13825-13838, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472987

ABSTRACT

Image scanning microscopy (ISM) overcomes the trade-off between spatial resolution and signal volume in confocal microscopy by rearranging the signal distribution on a two-dimensional detector array to achieve a spatial resolution close to the theoretical limit achievable by infinitesimal pinhole detection without sacrificing the detected signal intensity. In this paper, we improved the spatial resolution of ISM in three dimensions by exploiting saturated excitation (SAX) of fluorescence. We theoretically investigated the imaging properties of ISM, when the fluorescence signals are nonlinearly induced by SAX, and show combined SAX-ISM fluorescence imaging to demonstrate the improvement of the spatial resolution in three dimensions. In addition, we confirmed that the SNR of SAX-ISM imaging of fluorescent beads and biological samples, which is one of the challenges in conventional SAX microscopy, was improved.


Subject(s)
Optical Imaging , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Radionuclide Imaging
4.
J Microsc ; 288(2): 117-129, 2022 11.
Article in English | MEDLINE | ID: mdl-34028848

ABSTRACT

We improved the three-dimensional spatial resolution of laser scanning transmission microscopy by exploiting the saturated absorption of dye molecules. The saturated absorption is induced by the high-intensity light irradiation and localises the signal within the centre of the focal spot. Our numerical calculation indicates that the spatial resolution in transmission imaging is significantly improved for both lateral and axial directions using nonlinear transmitted signals induced by saturated absorption. We experimentally demonstrated the improvement of the three-dimensional resolution by observing fine structures of stained rat kidney tissues, which were not able to be visualised by conventional laser scanning transmission microscopy.


Confocal laser scanning microscopy is a powerful technique for three-dimensional imaging to study structures in a specimen. The use of confocal pinhole provides three-dimensional spatial resolution in various types of optical microscopes, such as fluorescence, reflection and scattering. However, in transmission microscopy, the confocal pinhole cannot provide the same effect because the spatial information on the optical axial is not transferred in the imaging system. Therefore, the three-dimensional distribution of light absorbers cannot be observed by laser scanning transmission microscopy. In this paper, we propose the use of saturated absorption to image the three-dimensional distribution of light absorbers in a sample by laser scanning transmission microscopy. The saturated absorption is induced by the high-intensity light irradiation and occurs prominently at the centre of a focal spot. The information of the saturated absorption signal within the focal spot is transferred to the transmitted light, providing the capability of optical sectioning in transmission imaging. In our research, we theoretically and experimentally confirmed that light absorption by dye molecules is saturable at the high illumination intensity, and the saturated absorption signal can be extracted by harmonic demodulation. We obtained the images of a stained rat kidney tissue by selectively detecting the nonlinear transmission signals induced by saturable absorption of the dye molecules. We confirmed the high depth discrimination capability of our technique clearly visualised the fine structures in the specimen that cannot be observed by a conventional laser scanning absorption microscope.


Subject(s)
Lasers , Animals , Rats , Chemical Phenomena , Microscopy, Confocal
5.
Opt Lett ; 46(1): 37-40, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362007

ABSTRACT

We demonstrate hyperspectral imaging by visible-wavelength two-photon excitation microscopy using line illumination and slit-confocal detection. A femtosecond pulsed laser light at 530 nm was used for the simultaneous excitation of fluorescent proteins with different emission wavelengths. The use of line illumination enabled efficient detection of hyperspectral images and achieved simultaneous detection of three fluorescence spectra in the observation of living HeLa cells with an exposure time of 1 ms per line, which is equivalent to about 2 µs per pixel in point scanning, with 160 data points per spectrum. On combining linear spectral unmixing techniques, localization of fluorescent probes in the cells was achieved. A theoretical investigation of the imaging property revealed high-depth discrimination property attained through the combination of nonlinear excitation and slit detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...