Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Neuropharmacology ; 238: 109668, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37474000

ABSTRACT

Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels , Long-Term Potentiation , Mice , Male , Animals , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/metabolism , Neuronal Plasticity , Learning
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362230

ABSTRACT

G-protein-gated inwardly rectifying potassium (GIRK) channels are critical determinants of neuronal excitability. They have been proposed as potential targets to restore excitatory/inhibitory balance in acute amyloidosis models, where hyperexcitability is a hallmark. However, the role of GIRK signaling in transgenic mice models of Alzheimer's disease (AD) is largely unknown. Here, we study whether progressive amyloid-ß (Aß) accumulation in the hippocampus during aging alters GIRK channel expression in mutant ß-amyloid precursor protein (APPSw,Ind J9) transgenic AD mice. Additionally, we examine the impact of spatial memory training in a hippocampal-dependent task, on protein expression of GIRK subunits and Regulator of G-protein signaling 7 (RGS7) in the hippocampus of APPSw,Ind J9 mice. Firstly, we found a reduction in GIRK2 expression (the main neuronal GIRK channels subunit) in the hippocampus of 6-month-old APPSw,Ind J9 mice. Moreover, we found an aging effect on GIRK2 and GIRK3 subunits in both wild type (WT) and APPSw,Ind J9 mice. Finally, when 6-month-old animals were challenged to a spatial memory training, GIRK2 expression in the APPSw,Ind J9 mice were normalized to WT levels. Together, our results support the evidence that GIRK2 could account for the excitatory/inhibitory neurotransmission imbalance found in AD models, and training in a cognitive hippocampal dependent task may have therapeutic benefits of reversing this effect and lessen early AD deficits.


Subject(s)
Alzheimer Disease , RGS Proteins , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/metabolism , Disease Models, Animal , Mice, Transgenic , Spatial Memory , RGS Proteins/metabolism
3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142727

ABSTRACT

Synaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals. However, long-lasting synaptic modifications studies during memory formation in physiological conditions in freely moving animals are very scarce. Here, to study synaptic plasticity phenomena during recognition memory in the dorsal hippocampus, field postsynaptic potentials (fPSPs) evoked at the CA3-CA1 synapse were recorded in freely moving mice during object-recognition task performance. Paired pulse stimuli were applied to Schaffer collaterals at the moment that the animal explored a new or a familiar object along different phases of the test. Stimulation evoked a complex synaptic response composed of an ionotropic excitatory glutamatergic fEPSP, followed by two inhibitory responses, an ionotropic, GABAA-mediated fIPSP and a metabotropic, G-protein-gated inwardly rectifying potassium (GirK) channel-mediated fIPSP. Our data showed the induction of LTP-like enhancements for both the glutamatergic and GirK-dependent components of the dorsal hippocampal CA3-CA1 synapse during the exploration of novel but not familiar objects. These results support the contention that synaptic plasticity processes that underlie hippocampal-dependent memory are sustained by fine tuning mechanisms that control excitatory and inhibitory neurotransmission balance.


Subject(s)
Hippocampus , Neuronal Plasticity , Animals , CA1 Region, Hippocampal/physiology , Hippocampus/physiology , Mice , Neuronal Plasticity/physiology , Potassium , Synapses/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid
4.
J Neurosci ; 41(33): 7086-7102, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34261700

ABSTRACT

The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Hippocampus/physiology , Nerve Tissue Proteins/physiology , Neuronal Plasticity/physiology , Animals , Conditioning, Operant/physiology , Emotions/physiology , Excitatory Postsynaptic Potentials/physiology , Learning/physiology , Long-Term Potentiation/physiology , Male , Mice , Mice, Inbred C57BL , Motor Activity/physiology , Psychomotor Performance/physiology
5.
Biology (Basel) ; 9(7)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698467

ABSTRACT

In early Alzheimer disease (AD) models synaptic failures and upstreaming aberrant patterns of network synchronous activity result in hippocampal-dependent memory deficits. In such initial stage, soluble forms of Amyloid-ß (Aß) peptides have been shown to play a causal role. Among different Aß species, Aß25-35 has been identified as the biologically active fragment, as induces major neuropathological signs related to early AD stages. Consequently, it has been extensively used to acutely explore the pathophysiological events related with neuronal dysfunction induced by soluble Aß forms. However, the synaptic mechanisms underlying its toxic effects on hippocampal-dependent memory remain unresolved. Here, in an in vivo model of amyloidosis generated by intracerebroventricular injections of Aß25-35 we studied the synaptic dysfunction mechanisms underlying hippocampal cognitive deficits. At the synaptic level, long-term potentiation (LTP) of synaptic excitation and inhibition was induced in CA1 region by high frequency simulation (HFS) applied to Schaffer collaterals. Aß25-35 was found to alter metaplastic mechanisms of plasticity, facilitating long-term depression (LTD) of both types of LTP. In addition, aberrant synchronization of hippocampal network activity was found while at the behavioral level, deficits in hippocampal-dependent habituation and recognition memories emerged. Together, our results provide a substrate for synaptic disruption mechanism underlying hippocampal cognitive deficits present in Aß25-35 amyloidosis model.

7.
J Neurochem ; 153(3): 362-376, 2020 05.
Article in English | MEDLINE | ID: mdl-31875959

ABSTRACT

Hippocampal synaptic plasticity disruption by amyloid-ß (Aß) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation. Here, in early in vitro and in vivo amyloidosis mouse models, we study whether GirK channels take part of the hippocampal synaptic plasticity impairments generated by Aß1-42 . In vitro electrophysiological recordings from slices showed that Aß1-42 alters synaptic plasticity by switching high-frequency stimulation (HFS) induced long-term potentiation (LTP) to long-term depression (LTD), which led to in vivo hippocampal-dependent memory deficits. Remarkably, selective pharmacological activation of GirK channels with ML297 rescued both HFS-induced LTP and habituation memory from Aß1-42 action. Moreover, when GirK channels were specifically blocked by Tertiapin-Q, their activation with ML297 failed to rescue LTP from the HFS-dependent LTD induced by Aß1-42 . On the other hand, the molecular analysis of the recorded slices by western blot showed that the expression of GIRK1/2 subunits, which form the prototypical GirK channel in the hippocampus, was not significantly regulated by Aß1-42 . However, immunohistochemical examination of our in vivo amyloidosis model showed Aß1-42 to down-regulate hippocampal GIRK1 subunit expression. Together, our results describe an Aß-mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models. In this scenario, GirK activation assures memory formation by preventing the transformation of HFS-induced LTP into LTD.


Subject(s)
Amyloidosis/metabolism , Excitatory Postsynaptic Potentials/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/metabolism , Long-Term Synaptic Depression/physiology , Memory Disorders/metabolism , Amyloid beta-Peptides/toxicity , Amyloidosis/chemically induced , Animals , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/drug effects , Long-Term Synaptic Depression/drug effects , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Peptide Fragments/toxicity , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, G-Protein-Coupled/metabolism
8.
Sci Rep ; 7(1): 14658, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116174

ABSTRACT

The hippocampus plays a critical role in learning and memory. Its correct performance relies on excitatory/inhibitory synaptic transmission balance. In early stages of Alzheimer's disease (AD), neuronal hyperexcitability leads to network dysfunction observed in cortical regions such as the hippocampus. G-protein-gated potassium (GirK) channels induce neurons to hyperpolarize, contribute to the resting membrane potential and could compensate any excesses of excitation. Here, we have studied the relationship between GirK channels and hippocampal function in a mouse model of early AD pathology. Intracerebroventricular injections of amyloid-ß (Aß 1-42) peptide-which have a causal role in AD pathogenesis-were performed to evaluate CA3-CA1 hippocampal synapse functionality in behaving mice. Aß increased the excitability of the CA3-CA1 synapse, impaired long-term potentiation (LTP) and hippocampal oscillatory activity, and induced deficits in novel object recognition (NOR) tests. Injection of ML297 alone, a selective GirK activator, was also translated in LTP and NOR deficits. However, increasing GirK activity rescued all hippocampal deficits induced by Aß due to the restoration of excitability values in the CA3-CA1 synapse. Our results show a synaptic mechanism, through GirK channel modulation, for the prevention of the hyperexcitability that causally contributes to synaptic, network, and cognitive deficits found in early AD pathogenesis.


Subject(s)
Alzheimer Disease/physiopathology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/physiopathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/pharmacology , Animals , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/physiopathology , Disease Models, Animal , G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , Hippocampus/metabolism , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacology , Phenylurea Compounds/pharmacology , Pyrazoles/pharmacology
9.
Clin Nutr ; 36(2): 522-529, 2017 04.
Article in English | MEDLINE | ID: mdl-26874912

ABSTRACT

BACKGROUND & AIMS: Low-grade chronic inflammation is involved in the pathophysiology of obesity. However, little is known about the influence of sex and sex hormones on surrogate inflammatory markers and mediators, particularly after glucose ingestion. DESIGN: Observational study. METHODS: We measured the circulating concentrations of interleukin-6, interleukin-18, macrophage migration inhibitory factor, matrix metallopeptidase-9, monocyte chemotactic protein-1 and pentraxin-3, in the fasting state and during a 75 g oral glucose tolerance test, in 24 women and 25 men. Eleven men and 11 women were lean whereas 14 men and 13 women had weight excess. RESULTS: Anti-inflammatory cytokines (interleukin-6 and interleukin-18) were increased in the fasting state and/or decreased in some women during the oral glucose tolerance test, as opposed to inflammatory mediators such as macrophage migration inhibitory factor and matrix metallopeptidase-9 that increased during the oral glucose tolerance test especially in subjects with weight excess. Body mass index and waist circumference were the main determinants of these changes. Fasting pentraxin-3 levels were especially increased in lean women in parallel to a decrease in free testosterone levels, and decreased during the oral glucose tolerance test as opposed to the increase in insulin concentrations. CONCLUSIONS: The circulating concentrations of markers of low-grade chronic inflammation in young healthy adults are not only influenced by obesity but also by abdominal adiposity, fasting and glucose ingestion and, in some cases, by sex and sex hormones. These influences should be considered when these markers are used as surrogate markers of the inflammatory milieu associated with obesity.


Subject(s)
Biomarkers/blood , Glucose/administration & dosage , Obesity/blood , Sex Factors , Adiposity , Adult , Body Mass Index , C-Reactive Protein/metabolism , Chemokine CCL2/blood , Fasting , Female , Glucose Tolerance Test , Gonadal Steroid Hormones/blood , Humans , Insulin/blood , Interleukin-18/blood , Interleukin-6/blood , Macrophage Migration-Inhibitory Factors/blood , Male , Matrix Metalloproteinase 9/blood , Serum Amyloid P-Component/metabolism , Waist Circumference , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL