Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(4): 632-647, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34921014

ABSTRACT

SRC is a nonreceptor tyrosine kinase with key roles in breast cancer development and progression. Despite this, SRC tyrosine kinase inhibitors have so far failed to live up to their promise in clinical trials, with poor overall response rates. We aimed to identify possible synergistic gene-drug interactions to discover new rational combination therapies for SRC inhibitors. An unbiased genome-wide CRISPR-Cas9 knockout screen in a model of triple-negative breast cancer revealed that loss of integrin-linked kinase (ILK) and its binding partners α-Parvin and PINCH-1 sensitizes cells to bosutinib, a clinically approved SRC/ABL kinase inhibitor. Sensitivity to bosutinib did not correlate with ABL dependency; instead, bosutinib likely induces these effects by acting as a SRC tyrosine kinase inhibitor. Furthermore, in vitro and in vivo models showed that loss of ILK enhanced sensitivity to eCF506, a novel and highly selective inhibitor of SRC with a unique mode of action. Whole-genome RNA sequencing following bosutinib treatment in ILK knockout cells identified broad changes in the expression of genes regulating cell adhesion and cell-extracellular matrix. Increased sensitivity to SRC inhibition in ILK knockout cells was associated with defective adhesion, resulting in reduced cell number as well as increased G1 arrest and apoptosis. These findings support the potential of ILK loss as an exploitable therapeutic vulnerability in breast cancer, enhancing the effectiveness of clinical SRC inhibitors. SIGNIFICANCE: A CRISPR-Cas9 screen reveals that loss of integrin-linked kinase synergizes with SRC inhibition, providing a new opportunity for enhancing the clinical effectiveness of SRC inhibitors in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , src-Family Kinases/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Knockout , Nitriles/pharmacology , Protein Serine-Threonine Kinases/metabolism , Quinolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Xenograft Model Antitumor Assays/methods , src-Family Kinases/metabolism
2.
Cancer Res ; 81(21): 5438-5450, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34417202

ABSTRACT

Despite the approval of several multikinase inhibitors that target SRC and the overwhelming evidence of the role of SRC in the progression and resistance mechanisms of many solid malignancies, inhibition of its kinase activity has thus far failed to improve patient outcomes. Here we report the small molecule eCF506 locks SRC in its native inactive conformation, thereby inhibiting both enzymatic and scaffolding functions that prevent phosphorylation and complex formation with its partner FAK. This mechanism of action resulted in highly potent and selective pathway inhibition in culture and in vivo. Treatment with eCF506 resulted in increased antitumor efficacy and tolerability in syngeneic murine cancer models, demonstrating significant therapeutic advantages over existing SRC/ABL inhibitors. Therefore, this mode of inhibiting SRC could lead to improved treatment of SRC-associated disorders. SIGNIFICANCE: Small molecule-mediated inhibition of SRC impairing both catalytic and scaffolding functions confers increased anticancer properties and tolerability compared with other SRC/ABL inhibitors.


Subject(s)
Bone Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Focal Adhesion Kinase 1/antagonists & inhibitors , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Apoptosis , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Conformation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , src-Family Kinases/chemistry , src-Family Kinases/metabolism
3.
Exp Eye Res ; 197: 108108, 2020 08.
Article in English | MEDLINE | ID: mdl-32590005

ABSTRACT

Although anti-VEGF therapies have radically changed clinical practice, there is still an urgent demand for novel, integrative approaches for sight-threatening retinal vascular diseases. As we hypothesize that protein tyrosine kinases are key signaling mediators in retinal vascular disease, we performed a comprehensive activity-based tyrosine kinome profiling on retinal tissue of 12-week-old Akimba mice, a translational model displaying hallmarks of early and advanced diabetic retinopathy. Western blotting was used to confirm retinal tyrosine kinase activity in Akimba mice. HUVEC tube formation and murine organotypic choroidal sprouting assays were applied to compare tyrosine kinase inhibitors with different specificity profiles. HUVEC toxicity and proliferation were evaluated using the CellTox™ Green Cytotoxicity and PrestoBlue™ Assays. Our results indicate a shift of the Akimba retinal tyrosine kinome towards a hyperactive state. Functional network analysis of significantly hyperphosphorylated peptides and upstream kinase prediction revealed a central role for Src-FAK family kinases. Western blotting confirmed hyperactivity of this signaling node in the retina of Akimba mice. We demonstrated that not only Src but also FAK family kinase inhibitors with different selectivity profiles were able to suppress angiogenesis in vitro and ex vivo. In the latter model, the novel selective Src family kinase inhibitor eCF506 was able to achieve potent reduction of angiogenesis, comparable to the less specific inhibitor Dasatinib. None of the tested compounds demonstrated acute endothelial cell toxicity. Overall, the collected findings provide the first comprehensive overview of retinal tyrosine kinome changes in the Akimba model of diabetic retinopathy and for the first time highlight Src family kinase inhibition using highly specific inhibitors as an attractive therapeutic intervention for retinal vascular pathology.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Tyrosine/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Blotting, Western , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , src-Family Kinases/metabolism
4.
ACS Omega ; 4(25): 21620-21626, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867559

ABSTRACT

A novel macrocyclic construct consisting of a pyrazolopyrimidine scaffold concatenated to a benzene ring through two triazoles has been developed to investigate uncharted chemical space with bioactive potential. The 18-atom macrocycle was assembled via a double copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between 1,3-bis(azidomethyl)benzene and a bis-propargylated pyrazolo[3,4-d]pyrimidine core. The resulting macrocycle was functionalized further into a multicyclic analog that displays selective inhibitory activity against the receptor tyrosine kinase AXL.

5.
Nat Commun ; 10(1): 2901, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263101

ABSTRACT

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 2/genetics , Receptor, ErbB-2/metabolism , src-Family Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Animals , Breast Neoplasms/pathology , CSK Tyrosine-Protein Kinase , Carcinogenesis , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Polycomb Repressive Complex 2/metabolism , Protein Biosynthesis , Receptor, ErbB-2/genetics , src-Family Kinases/genetics
6.
J Med Chem ; 61(5): 2104-2110, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466002

ABSTRACT

Pyrazolopyrimidines with potent antiproliferative properties were developed by an adaptive strategy that applies ligand-based design and phenotypic screening iteratively and is informed by biochemical assays. To drive development toward specific oncopathways, compounds were tested against cancer cells that overexpress, or not, AXL kinase. Identified phenotypic hits were found to inhibit oncotargets AXL, RET, and FLT3. Subsequent optimization generated antiproliferative lead compounds with unique selectivity profiles, including selective AXL inhibitors and a highly potent inhibitor of FLT3.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents , Cell Line, Tumor , Cell Survival , Drug Design , Drug Evaluation, Preclinical , Humans , Ligands , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL