Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Digit Imaging ; 35(1): 29-38, 2022 02.
Article in English | MEDLINE | ID: mdl-34997373

ABSTRACT

Spondyloarthritis (SpA) is a group of diseases primarily involving chronic inflammation of the spine and peripheral joints, as evaluated by magnetic resonance imaging (MRI). Considering the complexity of SpA, we performed a retrospective study to discover quantitative/radiomic MRI-based features correlated with SpA. We also investigated different fat-suppression MRI techniques to develop detection models for inflammatory sacroiliitis. Finally, these model results were compared with those of experienced musculoskeletal radiologists, and the concordance level was evaluated. Examinations of 46 consecutive patients were obtained using SPAIR (spectral attenuated inversion recovery) and STIR (short tau inversion recovery) MRI sequences. Musculoskeletal radiologists manually segmented the sacroiliac joints for further extraction of 230 MRI features from gray-level histogram/matrices and wavelet filters. These features were associated with sacroiliitis, SpA, and the current biomarkers of ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), BASDAI (Bath Ankylosing Spondylitis Activity Index), BASFI (Bath Ankylosing Spondylitis Functional Index), and MASES (Maastricht Ankylosing Spondylitis Enthesis Score). The Mann-Whitney U test showed that the radiomic markers from both MRI sequences were associated with active sacroiliitis and with SpA and its axial and peripheral subtypes (p < 0.05). Spearman's coefficient also identified a correlation between MRI markers and data from clinical practice (p < 0.05). Fat-suppression MRI models yielded performances that were statistically equivalent to those of specialists and presented strong concordance in identifying inflammatory sacroiliitis. SPAIR and STIR acquisition protocols showed potential for the evaluation of sacroiliac joints and the composition of a radiomic model to support the clinical assessment of SpA.


Subject(s)
Sacroiliitis , Spondylarthritis , Spondylitis, Ankylosing , Biomarkers , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies , Sacroiliac Joint/diagnostic imaging , Sacroiliitis/complications , Sacroiliitis/diagnostic imaging , Spondylarthritis/complications , Spondylarthritis/diagnostic imaging , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/diagnosis
2.
Int J Comput Assist Radiol Surg ; 15(10): 1737-1748, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32607695

ABSTRACT

PURPOSE: To evaluate the performance of texture-based biomarkers by radiomic analysis using magnetic resonance imaging (MRI) of patients with sacroiliitis secondary to spondyloarthritis (SpA). RELEVANCE: The determination of sacroiliac joints inflammatory activity supports the drug management in these diseases. METHODS: Sacroiliac joints (SIJ) MRI examinations of 47 patients were evaluated. Thirty-seven patients had SpA diagnoses (27 axial SpA and ten peripheral SpA) which was established previously after clinical and laboratory follow-up. To perform the analysis, the SIJ MRI was first segmented and warped. Second, radiomics biomarkers were extracted from the warped MRI images for associative analysis with sacroiliitis and the SpA subtypes. Finally, statistical and machine learning methods were applied to assess the associations of the radiomics texture-based biomarkers with clinical outcomes. RESULTS: All diagnostic performances obtained with individual or combined biomarkers reached areas under the receiver operating characteristic curves ≥ 0.80 regarding SpA related sacroiliitis and and SpA subtypes classification. Radiomics texture-based analysis showed significant differences between the positive and negative SpA groups and differentiated the axial and peripheral subtypes (P < 0.001). In addition, the radiomics analysis was also able to correctly identify the disease even in the absence of active inflammation. CONCLUSION: We concluded that the application of the radiomic approach constitutes a potential noninvasive tool to aid the diagnosis of sacroiliitis and for SpA subclassifications based on MRI of sacroiliac joints.


Subject(s)
Magnetic Resonance Imaging/methods , Sacroiliac Joint/diagnostic imaging , Sacroiliitis/diagnostic imaging , Spondylarthritis/diagnostic imaging , Adult , Biomarkers , Female , Humans , Male , Middle Aged , Sacroiliac Joint/pathology , Sacroiliitis/etiology , Sacroiliitis/pathology , Spondylarthritis/complications , Spondylarthritis/pathology
3.
Adv Rheumatol ; 60(1): 25, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381053

ABSTRACT

BACKGROUND: Currently, magnetic resonance imaging (MRI) is used to evaluate active inflammatory sacroiliitis related to axial spondyloarthritis (axSpA). The qualitative and semiquantitative diagnosis performed by expert radiologists and rheumatologists remains subject to significant intrapersonal and interpersonal variation. This encouraged us to use machine-learning methods for this task. METHODS: In this retrospective study including 56 sacroiliac joint MRI exams, 24 patients had positive and 32 had negative findings for inflammatory sacroiliitis according to the ASAS group criteria. The dataset was randomly split with ~ 80% (46 samples, 20 positive and 26 negative) as training and ~ 20% as external test (10 samples, 4 positive and 6 negative). After manual segmentation of the images by a musculoskeletal radiologist, multiple features were extracted. The classifiers used were the Support Vector Machine, the Multilayer Perceptron (MLP), and the Instance-Based Algorithm, combined with the Relief and Wrapper methods for feature selection. RESULTS: Based on 10-fold cross-validation using the training dataset, the MLP classifier obtained the best performance with sensitivity = 100%, specificity = 95.6% and accuracy = 84.7%, using 6 features selected by the Wrapper method. Using the test dataset (external validation) the same MLP classifier obtained sensitivity = 100%, specificity = 66.7% and accuracy = 80%. CONCLUSIONS: Our results show the potential of machine learning methods to identify SIJ subchondral bone marrow edema in axSpA patients and are promising to aid in the detection of active inflammatory sacroiliitis on MRI STIR sequences. Multilayer Perceptron (MLP) achieved the best results.


Subject(s)
Diagnosis, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Sacroiliitis/diagnosis , Spondylarthritis/diagnosis , Humans , Retrospective Studies , Sacroiliac Joint/diagnostic imaging , Sacroiliitis/diagnostic imaging , Sensitivity and Specificity , Spondylarthritis/diagnostic imaging
4.
Adv Rheumatol ; 60: 25, 2020. tab, graf
Article in English | LILACS | ID: biblio-1130789

ABSTRACT

Abstract Background: Currently, magnetic resonance imaging (MRI) is used to evaluate active inflammatory sacroiliitis related to axial spondyloarthritis (axSpA). The qualitative and semiquantitative diagnosis performed by expert radiologists and rheumatologists remains subject to significant intrapersonal and interpersonal variation. This encouraged us to use machine-learning methods for this task. Methods: In this retrospective study including 56 sacroiliac joint MRI exams, 24 patients had positive and 32 had negative findings for inflammatory sacroiliitis according to the ASAS group criteria. The dataset was randomly split with ∼ 80% (46 samples, 20 positive and 26 negative) as training and ∼ 20% as external test (10 samples, 4 positive and 6 negative). After manual segmentation of the images by a musculoskeletal radiologist, multiple features were extracted. The classifiers used were the Support Vector Machine, the Multilayer Perceptron (MLP), and the Instance-Based Algorithm, combined with the Relief and Wrapper methods for feature selection. Results: Based on 10-fold cross-validation using the training dataset, the MLP classifier obtained the best performance with sensitivity = 100%, specificity = 95.6% and accuracy = 84.7%, using 6 features selected by the Wrapper method. Using the test dataset (external validation) the same MLP classifier obtained sensitivity = 100%, specificity = 66.7% and accuracy = 80%. Conclusions: Our results show the potential of machine learning methods to identify SIJ subchondral bone marrow edema in axSpA patients and are promising to aid in the detection of active inflammatory sacroiliitis on MRI STIR sequences. Multilayer Perceptron (MLP) achieved the best results.(AU)


Subject(s)
Humans , Magnetic Resonance Imaging/instrumentation , Sacroiliitis/diagnostic imaging , Machine Learning , Artificial Intelligence , Retrospective Studies , Diagnosis, Computer-Assisted/instrumentation
5.
Radiol. bras ; 52(6): 387-396, Nov.-Dec. 2019. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1057023

ABSTRACT

Abstract The discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, making it a challenge for the radiologist to "know everything about all exams and regions". In addition, imaging exams are no longer only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of prognosis and treatment response. In view of this, computer-aided diagnosis systems have been developed with the objective of complementing diagnostic imaging and helping the therapeutic decision-making process. With the advent of artificial intelligence, "big data", and machine learning, we are moving toward the rapid expansion of the use of these tools in daily life of physicians, making each patient unique, as well as leading radiology toward the concept of multidisciplinary approach and precision medicine. In this article, we will present the main aspects of the computational tools currently available for analysis of images and the principles of such analysis, together with the main terms and concepts involved, as well as examining the impact that the development of artificial intelligence has had on radiology and diagnostic imaging.


Resumo A disciplina de radiologia e diagnóstico por imagem evoluiu sobremaneira nos últimos anos. Temos observado o aumento exponencial do número de exames realizados, a subespecialização das disciplinas médicas e a maior acurácia dos métodos, tornando um desafio para o médico radiologista "saber tudo sobre todos exames e regiões". Além disso, os exames de imagem deixaram de ser somente qualitativos e diagnósticos e passaram a fornecer informações quantitativas e de gravidade de doença, identificando biomarcadores prognósticos e de resposta ao tratamento. Diante disso, sistemas computadorizados de auxílio diagnóstico vêm sendo desenvolvidos com o objetivo dar suporte ao diagnóstico por imagem e à decisão terapêutica. Com o advento da inteligência artificial, do big data e do aprendizado de máquina, caminhamos para a rápida expansão do uso dessas ferramentas no dia-a-dia dos médicos, tornando cada paciente único, levando a radiologia ao encontro do conceito de abordagem multidisciplinar e medicina de precisão. Neste artigo serão abordados os principais aspectos das ferramentas computacionais atualmente disponíveis para análise das imagens médicas, apresentando os princípios de análise das imagens, os principais termos e conceitos envolvidos nesses processos, assim como o impacto do desenvolvimento da inteligência artificial na radiologia e diagnóstico por imagem.

6.
Radiol Bras ; 52(6): 387-396, 2019.
Article in English | MEDLINE | ID: mdl-32047333

ABSTRACT

The discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, making it a challenge for the radiologist to "know everything about all exams and regions". In addition, imaging exams are no longer only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of prognosis and treatment response. In view of this, computer-aided diagnosis systems have been developed with the objective of complementing diagnostic imaging and helping the therapeutic decision-making process. With the advent of artificial intelligence, "big data", and machine learning, we are moving toward the rapid expansion of the use of these tools in daily life of physicians, making each patient unique, as well as leading radiology toward the concept of multidisciplinary approach and precision medicine. In this article, we will present the main aspects of the computational tools currently available for analysis of images and the principles of such analysis, together with the main terms and concepts involved, as well as examining the impact that the development of artificial intelligence has had on radiology and diagnostic imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...