Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37177745

ABSTRACT

The Sencell sensor uses glucose-induced changes in an osmotic pressure chamber for continuous glucose measurement. A final device shall have the size of a grain of rice. The size limiting factor is the piezo-resistive pressure transducers inside the core sensor technology (resulting chamber volume: 70 µL. To achieve the necessary miniaturization, these pressure transducers were replaced by small (4000 × 400 × 150 nm³) nano-granular tunneling resistive (NTR) pressure sensors (chamber volume: 750 nL). For benchmark testing, we filled the miniaturized chamber with bovine serum albumin (BSA, 1 mM) and exposed it repeatedly to distilled water followed by 1 mM BSA solution. Thereafter, we manufactured sensors with glucose testing chemistry (ConcanavalinA/dextran) and investigated sensor performance with dynamic glucose changes between 0 and 300 mg/dL. Evaluation of the miniaturized sensors resulted in reliable pressure changes, both in the BSA benchmark experiment (30-35 mBar) and in the dynamic in vitro continuous glucose test (40-50 mBar). These pressure results were comparable to similar experiments with the previous larger in vitro sensors (30-50 mBar). In conclusion, the NTR pressure sensor technology was successfully employed to reduce the size of the core osmotic pressure chamber by more than 95% without loss in the osmotic pressure signal.


Subject(s)
Biosensing Techniques , Blood Glucose , Osmotic Pressure , Blood Glucose Self-Monitoring , Glucose , Miniaturization , Nanotechnology , Biosensing Techniques/methods
2.
Eur J Neurosci ; 55(6): 1442-1470, 2022 03.
Article in English | MEDLINE | ID: mdl-35236011

ABSTRACT

Amacrine cells constitute a large and heterogeneous group of inhibitory interneurons in the retina. The A17 amacrine plays an important role for visual signalling in the rod pathway microcircuit of the mammalian retina. It receives excitatory input from rod bipolar cells and provides feedback inhibition to the same cells. However, from ultrastructural investigations, there is evidence for input to A17s from other types of amacrine cells, presumably inhibitory, but there is a lack of information about the identity and functional properties of the synaptic receptors and how inhibition contributes to the integrative properties of A17s. Here, we studied the biophysical and pharmacological properties of GABAergic spontaneous inhibitory postsynaptic currents (spIPSCs) and GABAA receptors of A17 amacrines using whole-cell and outside-out patch recordings from rat retinal slices. The spIPSCs displayed fast onsets (10%-90% rise time ~740 µs) and double-exponential decays (τfast ~4.5 ms [43% of amplitude]; τslow ~22 ms). Ultra-fast application of brief pulses of GABA (3 mM) to patches evoked responses with deactivation kinetics best fitted by a triple-exponential function (τ1 ~5.3 ms [55% of amplitude]; τ2 ~48 ms [32% of amplitude]; τ3 ~187 ms). Non-stationary noise analysis of spIPSCs and patch responses yielded single-channel conductances of ~21 and ~25 pS, respectively. Pharmacological analysis suggested that the spIPSCs are mediated by receptors with an α1ßγ2 subunit composition and the somatic receptors have an α2ßγ2 and/or α3ßγ2 composition. These results demonstrate the presence of synaptic GABAA receptors on A17s, which may play an important role in signal integration in these cells.


Subject(s)
Amacrine Cells , Receptors, GABA-A , Amacrine Cells/metabolism , Animals , Inhibitory Postsynaptic Potentials/physiology , Mammals/metabolism , Patch-Clamp Techniques , Rats , Receptors, GABA-A/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...