Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
2.
Microbiome ; 6(1): 187, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340631

ABSTRACT

BACKGROUND: Paddy soil dissolved organic matter (DOM) represents a major hotspot for soil biogeochemistry, yet we know little about its chemodiversity let alone the microbial community that shapes it. Here, we leveraged ultrahigh-resolution mass spectrometry, amplicon, and metagenomic sequencing to characterize the molecular distribution of DOM and the taxonomic and functional microbial diversity in paddy soils across China. We hypothesized that variances in microbial community significantly associate with changes in soil DOM molecular composition. RESULTS: We report that both microbial and DOM profiles revealed geographic patterns that were associated with variation in mean monthly precipitation, mean annual temperature, and pH. DOM molecular diversity was significantly correlated with microbial taxonomic diversity. An increase in DOM molecules categorized as peptides, carbohydrates, and unsaturated aliphatics, and a decrease in those belonging to polyphenolics and polycyclic aromatics, significantly correlated with proportional changes in some of the microbial taxa, such as Syntrophobacterales, Thermoleophilia, Geobacter, Spirochaeta, Gaiella, and Defluviicoccus. DOM composition was also associated with the relative abundances of the microbial metabolic pathways, such as anaerobic carbon fixation, glycolysis, lignolysis, fermentation, and methanogenesis. CONCLUSIONS: Our study demonstrates the continental-scale distribution of DOM is significantly correlated with the taxonomic profile and metabolic potential of the rice paddy microbiome. Abiotic factors that have a distinct effect on community structure can also influence the chemodiversity of DOM and vice versa. Deciphering these associations and the underlying mechanisms can precipitate understanding of the complex ecology of paddy soils, as well as help assess the effects of human activities on biogeochemistry and greenhouse gas emissions in paddy soils.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Microbiota/genetics , Organic Chemicals/analysis , Oryza/microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Carbon Cycle , Geography , Mass Spectrometry , Metagenome/genetics , Soil Microbiology
3.
Huan Jing Ke Xue ; 38(7): 3000-3009, 2017 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29964643

ABSTRACT

Microbial community and phosphorus forms in response to simulated climate warming were studied by high-throughput sequencing and 31P nuclear magnetic resonance(31P-NMR) respectively, which were from wetland soils in constructed microcosm columns. The results revealed that relative abundances of Firmicutes, Clostridia, Clostridiales, Clostridiaceae and Clostridium were significantly decreased by 65%-98%, 69%-87%, 67%-87%, 73%-97% and 74%-93% under warming condition respectively, suggesting warming had a significant inhibitory effect on the bacterial lineage from Firmicutes to Clostridium at different taxonomic level. Particularly, principal coordinate analysis and cluster analysis also demonstrated warming had a significant effect on microbial community structure with obvious separation of samples between control and warmed groups from each wetland column site. Phosphorus forms were dominated by phosphomonoester and orthophosphate in each wetland column soil, which were significantly increased and decreased by 275% and 20% in XX wetland column soil respectively. Similarly, phosphomonoester and polyphosphate were also found to be increased and decreased by 85% and 49% in JH wetland column soil respectively, indicating that phosphorus forms in response to warming had soil heterogeneity. Canonical correspondence analysis showed that obvious changes in microbial community composition had significant effects on phosphorus forms under warming condition.


Subject(s)
Climate Change , Phosphorus/analysis , Soil Microbiology , Wetlands , Bacteria/classification , Soil , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...