Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511363

ABSTRACT

Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.


Subject(s)
Pinellia , Pinellia/genetics , Gene Expression Profiling , Hormones/metabolism , Gene Expression
2.
J Nat Med ; 75(4): 1050-1057, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34275105

ABSTRACT

Pinellia ternata is a native herb in China, and its tuber is widely-used in traditional Chinese medicines. It has been identified that the shading treatment promotes tuber production during cultivation. However, the tuber quality in shaded environments is unknown, which limits the scientific cultivation of P. ternata. In this study, a metabolomics approach based on UHPLC-MS was applied to assess the metabolic components of P. ternata in response to shading. Diverse metabolites were profiled using the metabolomics approach. Then, datasets of P. ternata cultivated in natural light (control) and shaded environments were subjected to multivariate analyses. Two P. ternata tuber products were well separated by the PCA. In total, four P. ternata alkaloids with contents that were not altered by the shaded environment were detected. Metabolomic analyses further identified several organic acids [mevalonic acid, 12,13-dihydroxy-9Z-octadecenoic acid (12, 13-DiHOME), urocanic acid, and γ-aminobutyric acid] that were largely enriched in the shaded environment, which likely contributed to tuber quality and growth. This study determined that shading probably improves the quality of P. ternata tubers and laid a foundation for exploring the regulatory mechanism of the shade response in P. ternata.


Subject(s)
Alkaloids , Pinellia , Chromatography, High Pressure Liquid , Metabolomics , Plant Tubers
3.
BMC Plant Biol ; 19(1): 565, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31852442

ABSTRACT

BACKGROUND: Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. When exposed to strong light intensity and high temperature during the reproductive growth process, P. ternata withers in a phenomenon known as "sprout tumble", which largely limits tuber production. Shade was previously found to delay sprout tumble formation (STF); however, no information exists regarding this process at the molecular level. Hence, we determined the genes involved in tuber development and STF in P. ternata. RESULTS: Compared to that with natural sun-light (control), shade significantly induced chlorophyll accumulation, increased chlorophyll fluorescence parameters including initial fluorescence, maximal fluorescence, and qP, and dramatically repressed chlorophyll a:b and NPQ. Catalase (CAT) activity was largely induced by shade, and tuber products were largely increased in this environment. Transcriptome profiles of P. ternata grown in natural sun-light and shaded environments were analyzed by a combination of next generation sequencing (NGS) and third generation single-molecule real-time (SMRT) sequencing. Corrections of SMRT long reads based on NGS short reads yielded 136,163 non-redundant transcripts, with an average N50 length of 2578 bp. In total, 6738 deferentially-expressed genes (DEGs) were obtained from the comparisons, specifically D5S vs D5CK, D20S vs D20CK, D20S vs D5S, and D20CK vs D5CK, of which, 6384 DEGs (94.8%) were generated from the D20S vs D20CK comparison. Gene annotation and functional analyses revealed that these genes were related to auxin signal transduction, polysaccharide and sugar metabolism, phenylpropanoid biosynthesis, and photosynthesis. Moreover, the expression of genes enriched in photosynthesis appeared to be significantly altered by shade. The expression patterns of 16 candidate genes were consistent with changes in their transcript abundance as identified by RNA-Seq, and these might contribute to STF and tuber production. CONCLUSION: The full-length transcripts identified in this study have provided a more accurate depiction of P. ternata gene transcription. Further, we identified potential genes involved in STF and tuber growth. Such data could serve as a genetic resource and a foundation for further research on this important traditional herb.


Subject(s)
Genes, Plant , Pinellia/genetics , Plant Tubers/growth & development , Sunlight , Transcriptome , Gene Expression Profiling , Pinellia/growth & development , Plant Tubers/genetics
4.
BMC Plant Biol ; 18(1): 272, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30409115

ABSTRACT

BACKGROUND: Isodon amethystoides (Ben-th) Cy Wu et Hsuan is an important traditional medicinal plant endowed with pharmacological properties effective in the treatment of various diseases, including pulmonary tuberculosis. The tetracyclic diterpenoids, Wangzaozins (Wangzaozin A, glaucocalyxin A, glaucocalyxin B), are the major bioactive compounds of I. amethystoides. However, the molecular information about the biosynthesis of these compounds still remains unclear. RESULTS: An examination of the accumulated levels of Wangzaozins in I. amethystoides revealed considerable variations in the root, stem, and leaf tissues of this plant, indicating possible differences in metabolite biosynthesis and accumulation among various tissues. To better elucidate the tetracyclic diterpenoid biosynthesis pathway, we generated transcriptome sequences from the root, stem, and leaf tissues, and performed de novo sequence assembly, yielding 230,974 transcripts and 114,488 unigenes, with average N50 lengths of 1914 and 1241 bp, respectively. Putative functions could be assigned to 73,693 transcripts (31.9%) based on BLAST searches against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. Moreover, the candidate genes involving in the diterpenoid biosynthesis, such as CPS, KSL, were also analyzed. The expression profiles of eight transcripts, involving the tetracyclic diterpenoid biosynthesis, were validated in different I. amethystoides tissues by qRT-PCR, unraveling the gene expression profile of the pathway. The differential expressions of ISPD, ISPF and ISPH (MEP pathway), and IaCPS and IaKSL (diterpenoid pathway) candidate genes in leaves and roots, may contribute to the high accumulation of Wangzaozins in I. amethystoides leaves. CONCLUSION: The genomic dataset and analyses reported here lay the foundations for further research on this important medicinal plant.


Subject(s)
Isodon/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plant Stems/genetics , Transcriptome/genetics , Isodon/metabolism , Molecular Sequence Annotation , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism
5.
Zhongguo Zhong Yao Za Zhi ; 37(12): 1731-3, 2012 Jun.
Article in Chinese | MEDLINE | ID: mdl-22997813

ABSTRACT

OBJECTIVE: To determine the optimal concentration and processing time of EMS mutation for suspension cells from Pinellia ternata. METHOD: Under four EMS concentration gradients (0.1% , 0.2%, 0.4%, 0.6%) and three processing time gradients (0.5, 1.0, 2.0 h), the suspension cells of P. ternata were mutagenized. RESULT AND CONCLUSION: The results showed that the survival rate was significantly different under the different concentrations of EMS and the different processing time. In the same processing time, the EMS concentrations were increased, but the suspension cells survival rate decreased gradually. The optimum EMS concentration for the mutagenesis was 0.4% and the best processing time was 1 hour.


Subject(s)
Ethyl Methanesulfonate/pharmacology , Mutation/drug effects , Pinellia/cytology , Pinellia/genetics , Temperature , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Mutagenesis/drug effects , Pinellia/drug effects , Pinellia/physiology , Suspensions , Time Factors
6.
Zhongguo Zhong Yao Za Zhi ; 37(24): 3758-62, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23627174

ABSTRACT

OBJECTIVE: To establish an efficient genetic transformation system of Pinellia ternata. METHOD: With petioles from test-tube seedlings of P. ternata as explants, Agrobacterium tumefaciens mediation method was adopted to explore the effect of phenolic substances, A. tumefaciens's concentration, infection time, pre-incubation time and co-cultivation time on genetic transformation efficiency of P. ternata. RESULT AND CONCLUSION: The genetic transformation efficiency could be effectively enhanced by infecting in A. tumefaciens culture containing AS 40 mg x L(-1) for 15 min for three days. The petioles were put into the differentiation medium containing 150 mg x L(-1) Kan and 350 mg x L(-1) Carb to screening and cultivation. After around 30 days, microtubers could be observed at both sides of the petioles. Gus staining and PCR verification on the regenerated plants showed that the exogenous gene sHSP had been integrated into genome of P. ternata.


Subject(s)
Agrobacterium tumefaciens/genetics , Heat-Shock Proteins, Small/genetics , Pinellia/genetics , Transformation, Genetic , DNA, Plant/genetics , Genetic Engineering/methods , Glucuronidase/genetics , Glucuronidase/metabolism , Pinellia/growth & development , Pinellia/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction , Reproducibility of Results , Tissue Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...