Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nano Today ; 482023 02.
Article in English | MEDLINE | ID: mdl-36711067

ABSTRACT

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.

2.
Gut Liver ; 17(1): 24-33, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36530125

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world. NAFLD is a hepatic manifestation of insulin resistance, the core pathophysiology of diabetes. Multiple clinical studies show that diabetes increases the risk of liver disease progression and cirrhosis development in patients with NAFLD. Diabetes has causal associations with many different cancers, including hepatocellular carcinoma (HCC). More recent studies demonstrate that diabetes increases the risk of HCC in patients with underlying NAFLD cirrhosis, confirming the direct hepatocarcinogenic effect of diabetes among cirrhosis patients. Diabetes promotes hepatocarcinogenesis via the activation of inflammatory cascades producing reactive oxygen species and proinflammatory cytokines, leading to genomic instability, cellular proliferation, and inhibition of apoptosis. Given the global increase in the burden of NAFLD and HCC, high-risk patients such as older diabetic individuals should be carefully monitored for HCC development. Future larger studies should explore whether the effect of diabetes on HCC risk in NAFLD cirrhosis is modifiable by the type of antidiabetic medication and the effectiveness of diabetes control.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Liver Neoplasms/pathology , Risk Factors , Liver Cirrhosis/complications , Liver Cirrhosis/pathology , Fibrosis
3.
Adv Mater Technol ; : 2200387, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36247709

ABSTRACT

The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID-19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID-19 pandemic.

4.
J Gastroenterol Hepatol ; 37(7): 1179-1190, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35543075

ABSTRACT

Serum alpha-fetoprotein and radiologic imaging are the most commonly used tests for early diagnosis and dynamic monitoring of treatment response in hepatocellular carcinoma (HCC). However, the accuracy of these tests is limited, and they may not reflect the underlying biology of the tumor. Thus, developing highly accurate novel HCC biomarkers reflecting tumor biology is a clinically unmet need. Circulating tumor cells (CTCs) have long been proposed as a noninvasive biomarker in clinical oncology. Most CTC assays utilize immunoaffinity-based, size-based, and/or enrichment-free mechanisms followed by immunocytochemical staining to characterize CTCs. The prognostic value of HCC CTC enumeration has been extensively validated. Subsets of CTCs expressing mesenchymal markers are also reported to have clinical significance. In addition, researchers have been devoting their efforts to molecular characterizations of CTCs (e.g. genetics and transcriptomics) as molecular profiling can offer a more accurate readout and provide biological insights. As new molecular profiling techniques, such as digital polymerase chain reaction, are developed to detect minimal amounts of DNA/RNA, several research groups have established HCC CTC digital scoring systems to quantify clinically relevant gene panels. Given the versatility of CTCs to provide intact molecular and functional data that reflects the underlying tumor, CTCs have great potential as a noninvasive biomarker in HCC. Large-scale, prospective studies for HCC CTCs with a standardized protocol are necessary for successful clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Cells, Circulating , Biomarkers , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Neoplastic Cells, Circulating/pathology , Precision Medicine , Prospective Studies
5.
Cancers (Basel) ; 14(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35326723

ABSTRACT

The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.

6.
Biosens Bioelectron ; 199: 113854, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896918

ABSTRACT

Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.


Subject(s)
Biosensing Techniques , Neoplastic Cells, Circulating , Neuroendocrine Tumors , Biomarkers, Tumor , Humans , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology
7.
J Pers Med ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34834521

ABSTRACT

Glaucoma is a progressive and irreversible blindness-causing disease. However, the underlying genetic factors and molecular mechanisms remain poorly understood. Previous genome-wide association studies (GWAS) have made tremendous progress on the SNP-based disease association and characterization. However, most of them were conducted for Europeans. Since differential genetic characteristics among ethnic groups were evident in glaucoma, it is worthwhile to complete its genetic landscape from the larger cohorts of Asian individuals. Here, we present a GWAS based on the Taiwan Biobank. Among 1013 glaucoma patients and 36,562 controls, we identified a total of 138 independent glaucoma-associated SNPs at the significance level of p < 1 × 10-5. After clumping genetically linked SNPs (LD clumping), 134 independent SNPs with p < 10-4 were recruited to construct a Polygenic Risk Score (PRS). The model achieved an area under the receiver operating characteristic curve (AUC) of 0.8387 (95% CI = [0.8269-0.8506]), and those within the top PRS quantile had a 45.48-fold increased risk of glaucoma compared with those within the lowest quantile. The PRS model was validated with an independent cohort that achieved an AUC of 0.7283, thereby showing the effectiveness of our polygenic risk score in predicting individuals in the Han Chinese population with higher glaucoma risks.

8.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769200

ABSTRACT

In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.


Subject(s)
DNA Damage , DNA Repair , Prostatic Neoplasms/genetics , Transcriptome , Biomarkers, Tumor/genetics , Gene Expression Profiling , Humans , Male , Mutation , Prognosis , Prostatic Neoplasms/diagnosis
9.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638933

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality worldwide, and its tumorigenesis involves the accumulation of genetic and epigenetic events in the respiratory epithelium. Epigenetic modifications, such as DNA methylation, RNA modification, and histone modifications, have been widely reported to play an important role in lung cancer development and in other pulmonary diseases. Whereas the functionality of DNA and chromatin modifications referred to as epigenetics is widely characterized, various modifications of RNA nucleotides have recently come into prominence as functionally important. N6-methyladosine (m6A) is the most prevalent internal modification in mRNAs, and its machinery of writers, erasers, and readers is well-characterized. However, several other nucleotide modifications of mRNAs and various noncoding RNAs have also been shown to play an important role in the regulation of biological processes and pathology. Such epitranscriptomic modifications play an important role in regulating various aspects of RNA metabolism, including transcription, translation, splicing, and stability. The dysregulation of epitranscriptomic machinery has been implicated in the pathological processes associated with carcinogenesis including uncontrolled cell proliferation, migration, invasion, and epithelial-mesenchymal transition. In recent years, with the advancement of RNA sequencing technology, high-resolution maps of different modifications in various tissues, organs, or disease models are being constantly reported at a dramatic speed. This facilitates further understanding of the relationship between disease development and epitranscriptomics, shedding light on new therapeutic possibilities. In this review, we summarize the basic information on RNA modifications, including m6A, m1A, m5C, m7G, pseudouridine, and A-to-I editing. We then demonstrate their relation to different kinds of lung diseases, especially lung cancer. By comparing the different roles RNA modifications play in the development processes of different diseases, this review may provide some new insights and offer a better understanding of RNA epigenetics and its involvement in pulmonary diseases.


Subject(s)
Epigenesis, Genetic , Lung Diseases/genetics , Lung Neoplasms/genetics , RNA Processing, Post-Transcriptional , RNA/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Humans , Lung Diseases/metabolism , Lung Neoplasms/metabolism , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Am J Clin Exp Urol ; 9(4): 350-366, 2021.
Article in English | MEDLINE | ID: mdl-34541033

ABSTRACT

A major metastasis suppressing mechanism is the rapid apoptotic death of cancer cells upon detachment from extracellular matrix, a process called anoikis. Focal adhesion kinase (PTK2/FAK) is a key enzyme involved in evasion of anoikis. We show that loss of the Cub-domain containing protein-1 (CDCP1), paradoxically stimulates FAK activation in the detached state of prostate cancer cells. In CDCP1low DU145 and PC3 prostate cancer cells, detachment-activation of FAK occurs through local production of PI(4,5)P2. PI(4,5)P2 is generated by the PIP5K1c-201 splicing isoform of PIP5K1c, which contains a unique SRC phosphorylation site. In the detached state, reduced expression of CDCP1 and an alternative CDCP1-independent SRC activation mechanism triggers PIP5K1c-pY644 phosphorylation by SRC. This causes a switch of Talin binding from ß1-integrin to PIP5K1c-pY644 and leads to activation of PIP5K1c-FAK. Reduced CDCP1 expression also inactivates CDK5, a negative regulator of PIP5K1c. Furthermore, immersion of prostate cancer cells in 10% human plasma or fetal bovine serum is required for activation of PIP5K1c-FAK. The PIP5K1c induced detachment-activation of FAK in preclinical models sensitizes CDCP1low prostate cancer cells to FAK inhibitors. In patients, CDCP1High versus CDCP1low circulating tumor cells differ in expression of AR-v7, ONECUT2 and HOXB13 oncogenes and TMPRSS2 and display intra-patient heterogeneity of FAK-pY397 expression. Taken together, CDCP1low and CDCP1high detached prostate cancer cells activate distinct cytoplasmic kinase complexes and targetable transcription factors, which has important therapeutic implications.

11.
Nat Commun ; 12(1): 4408, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344888

ABSTRACT

Placenta accreta spectrum (PAS) is a high-risk obstetrical condition associated with significant morbidity and mortality. Current clinical screening modalities for PAS are not always conclusive. Here, we report a nanostructure-embedded microchip that efficiently enriches both single and clustered circulating trophoblasts (cTBs) from maternal blood for detecting PAS. We discover a uniquely high prevalence of cTB-clusters in PAS and subsequently optimize the device to preserve the intactness of these clusters. Our feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. A logistic regression model is constructed using a training cohort and then cross-validated and tested using an independent cohort. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Our assay holds the potential to improve current diagnostic modalities for the early detection of PAS.


Subject(s)
Maternal Serum Screening Tests/methods , Placenta Accreta/diagnosis , Trophoblasts/pathology , Adult , Biomarkers/blood , Cell Aggregation , Cohort Studies , Diagnosis, Differential , Female , Humans , Lab-On-A-Chip Devices , Maternal Serum Screening Tests/instrumentation , Middle Aged , Nanostructures , Placenta Accreta/blood , Placenta Previa/blood , Placenta Previa/diagnosis , Pregnancy , ROC Curve , Reproducibility of Results
12.
Adv Mater Technol ; 6(5)2021 May.
Article in English | MEDLINE | ID: mdl-34212072

ABSTRACT

Transcriptomic profiling of tumor tissues introduces a large database, which has led to improvements in the ability of cancer diagnosis, treatment, and prevention. However, performing tumor transcriptomic profiling in the clinical setting is very challenging since the procurement of tumor tissues is inherently limited by invasive sampling procedures. Here, we demonstrated the feasibility of purifying hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from clinical patient samples with improved molecular integrity using Click Chips in conjunction with a multimarker antibody cocktail. The purified CTCs were then subjected to mRNA profiling by NanoString nCounter platform, targeting 64 HCC-specific genes, which were generated from an integrated data analysis framework with 8 tissue-based prognostic gene signatures from 7 publicly available HCC transcriptomic studies. After bioinformatics analysis and comparison, the HCC CTC-derived gene signatures showed high concordance with HCC tissue-derived gene signatures from TCGA database, suggesting that HCC CTCs purified by Click Chips could enable the translation of HCC tissue molecular profiling into a noninvasive setting.

13.
Hepatology ; 73(1): 422-436, 2021 01.
Article in English | MEDLINE | ID: mdl-32017145

ABSTRACT

Hepatocellular carcinoma (HCC) is among the leading causes of worldwide cancer-related morbidity and mortality. Poor prognosis of HCC is attributed primarily to tumor presentation at an advanced stage when there is no effective treatment to achieve the long term survival of patients. Currently available tests such as alpha-fetoprotein have limited accuracy as a diagnostic or prognostic biomarker for HCC. Liver biopsy provides tissue that can reveal tumor biology but it is not used routinely due to its invasiveness and risk of tumor seeding, especially in early-stage patients. Liver biopsy is also limited in revealing comprehensive tumor biology due to intratumoral heterogeneity. There is a clear need for new biomarkers to improve HCC detection, prognostication, prediction of treatment response, and disease monitoring with treatment. Liquid biopsy could be an effective method of early detection and management of HCC. Circulating tumor cells (CTCs) are cancer cells in circulation derived from the original tumor or metastatic foci, and their measurement by liquid biopsy represents a great potential in facilitating the implementation of precision medicine in patients with HCC. CTCs can be detected by a simple peripheral blood draw and potentially show global features of tumor characteristics. Various CTC detection platforms using immunoaffinity and biophysical properties have been developed to identify and capture CTCs with high efficiency. Quantitative abundance of CTCs, as well as biological characteristics and genomic heterogeneity among the CTCs, can predict disease prognosis and response to therapy in patients with HCC. This review article will discuss the currently available technologies for CTC detection and isolation, their utility in the clinical management of HCC patients, their limitations, and future directions of research.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/blood , Liver Neoplasms/blood , Neoplastic Cells, Circulating/metabolism , Carcinoma, Hepatocellular/pathology , Epithelial Cell Adhesion Molecule/analysis , Epithelial Cell Adhesion Molecule/metabolism , Humans , Liquid Biopsy/methods , Liver Neoplasms/pathology , Prognosis
14.
Hepatol Commun ; 4(10): 1527-1540, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33024921

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of mortality. Checkpoint inhibitors of programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown great efficacy, but lack biomarkers that predict response. Circulating tumor cells (CTCs) have promise as a liquid-biopsy biomarker; however, data on HCC CTCs expressing PD-L1 have not been reported. We sought to detect PD-L1-expressing HCC-CTCs and investigated their role as a prognostic and predictive biomarker. Using an antibody-based platform, CTCs were enumerated/phenotyped from a prospective cohort of 87 patients with HCC (49 early-stage, 22 locally advanced, and 16 metastatic), 7 patients with cirrhosis, and 8 healthy controls. Immunocytochemistry identified total HCC CTCs (4',6-diamidino-2-phenylindole-positive [DAPI+]/cytokeratin-positive [CK+]/clusters of differentiation 45-negative [CD45-]) and a subpopulation expressing PD-L1 (DAPI+/CK+/PD-L1+/CD45-). PD-L1+ CTCs were identified in 4 of 49 (8.2%) early-stage patients, but 12 of 22 (54.5%) locally advanced and 15 of 16 (93.8%) metastatic patients, accurately discriminating early from locally advanced/metastatic HCC (sensitivity = 71.1%, specificity = 91.8%, area under the receiver operating characteristic curve = 0.807; P < 0.001). Compared to patients without PD-L1+ CTCs, patients with PD-L1+ CTCs had significantly inferior overall survival (OS) (median OS = 14.0 months vs. not reached, hazard ratio [HR] = 4.0, P = 0.001). PD-L1+ CTCs remained an independent predictor of OS (HR = 3.22, P = 0.010) even after controlling for Model for End-Stage Liver Disease score (HR = 1.14, P < 0.001), alpha-fetoprotein (HR = 1.55, P < 0.001), and overall stage/tumor burden (beyond University of California, San Francisco, HR = 7.19, P < 0.001). In the subset of 10 patients with HCC receiving PD-1 blockade, all 5 responders demonstrated PD-L1+ CTCs at baseline, compared with only 1 of 5 nonresponders, all of whom progressed within 4 months of starting treatment. Conclusion: We report a CTC assay for the phenotypic profiling of HCC CTCs expressing PD-L1. PD-L1+ CTCs are predominantly found in advanced-stage HCC, and independently prognosticate OS after controlling for Model for End-Stage Liver Disease, alpha-fetoprotein, and tumor stage. In patients with HCC receiving anti-PD-1 therapy, there was a strong association with the presence of PD-L1+ CTCs and favorable treatment response. Prospective validation in a larger cohort will better define the utility of PD-L1+ CTCs as a prognostic and predictive biomarker in HCC.

15.
Nat Commun ; 11(1): 4489, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895384

ABSTRACT

We report a covalent chemistry-based hepatocellular carcinoma (HCC)-specific extracellular vesicle (EV) purification system for early detection of HCC by performing digital scoring on the purified EVs. Earlier detection of HCC creates more opportunities for curative therapeutic interventions. EVs are present in circulation at relatively early stages of disease, providing potential opportunities for HCC early detection. We develop an HCC EV purification system (i.e., EV Click Chips) by synergistically integrating covalent chemistry-mediated EV capture/release, multimarker antibody cocktails, nanostructured substrates, and microfluidic chaotic mixers. We then explore the translational potential of EV Click Chips using 158 plasma samples of HCC patients and control cohorts. The purified HCC EVs are subjected to reverse-transcription droplet digital PCR for quantification of 10 HCC-specific mRNA markers and computation of digital scoring. The HCC EV-derived molecular signatures exhibit great potential for noninvasive early detection of HCC from at-risk cirrhotic patients with an area under receiver operator characteristic curve of 0.93 (95% CI, 0.86 to 1.00; sensitivity = 94.4%, specificity = 88.5%).


Subject(s)
Biomarkers, Tumor/isolation & purification , Carcinoma, Hepatocellular/diagnosis , Early Detection of Cancer/methods , Extracellular Vesicles/genetics , Liver Neoplasms/diagnosis , Aged , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Click Chemistry/instrumentation , Click Chemistry/methods , Computational Chemistry , Computer Simulation , Diagnosis, Differential , Dimethylpolysiloxanes/chemistry , Disease Progression , Early Detection of Cancer/instrumentation , Female , Hep G2 Cells , Humans , Lab-On-A-Chip Devices , Liquid Biopsy/instrumentation , Liquid Biopsy/methods , Liver Cirrhosis/blood , Liver Cirrhosis/pathology , Liver Neoplasms/blood , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Middle Aged , Nanostructures/chemistry , Nanowires/chemistry , Neoplasm Staging , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods
16.
Adv Funct Mater ; 30(49)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-34220409

ABSTRACT

Tumor-derived extracellular vesicles (EVs) play essential roles in intercellular communication during tumor growth and metastatic evolution. Currently, little is known about the possible roles of tumor-derived EVs in sarcoma because the lack of specific surface markers makes it technically challenging to purify sarcoma-derived EVs. In this study, a specific purification system is developed for Ewing sarcoma (ES)-derived EVs by coupling covalent chemistry-mediated EV capture/ release within a nanostructure-embedded microchip. The purification platform-ES-EV Click Chip-takes advantage of specific anti-LINGO-1 recognition and sensitive click chemistry-mediated EV capture, followed by disulfide cleavage-driven EV release. Since the device is capable of specific and efficient purification of intact ES EVs with high purity, ES-EV Click Chip is ideal for conducting downstream functional studies of ES EVs. Absolute quantification of the molecular hallmark of ES (i.e., EWS rearrangements) using reverse transcription Droplet Digital PCR enables specific quantification of ES EVs. The purified ES EVs can be internalized by recipient cells and transfer their mRNA cargoes, exhibiting their biological intactness and potential role as biological shuttles in intercellular communication.

17.
Theranostics ; 9(10): 2812-2826, 2019.
Article in English | MEDLINE | ID: mdl-31244925

ABSTRACT

Rationale: Our objective was to develop a circulating tumor cell (CTC)-RNA assay for characterizing clinically relevant RNA signatures for the assessment of androgen receptor signaling inhibitor (ARSI) sensitivity in metastatic castration-resistant prostate cancer (mCRPC) patients. Methods: We developed the NanoVelcro CTC-RNA assay by combining the Thermoresponsive (TR)-NanoVelcro CTC purification system with the NanoString nCounter platform for cellular purification and RNA analysis. Based on the well-validated, tissue-based Prostate Cancer Classification System (PCS), we focus on the most aggressive and ARSI-resistant PCS subtype, i.e., PCS1, for CTC analysis. We applied a rigorous bioinformatic process to develop the CTC-PCS1 panel that consists of prostate cancer (PCa) CTC-specific RNA signature with minimal expression in background white blood cells (WBCs). We validated the NanoVelcro CTC-RNA assay and the CTC-PCS1 panel with well-characterized PCa cell lines to demonstrate the sensitivity and dynamic range of the assay, as well as the specificity of the PCS1 Z score (the likelihood estimate of the PCS1 subtype) for identifying PCS1 subtype and ARSI resistance. We then selected 31 blood samples from 23 PCa patients receiving ARSIs to test in our assay. The PCS1 Z scores of each sample were computed and compared with ARSI treatment sensitivity. Results: The validation studies using PCa cell line samples showed that the NanoVelcro CTC-RNA assay can detect the RNA transcripts in the CTC-PCS1 panel with high sensitivity and linearity in the dynamic range of 5-100 cells. We also showed that the genes in CTC-PCS1 panel are highly expressed in PCa cell lines and lowly expressed in background WBCs. Using the artificial CTC samples simulating the blood sample conditions, we further demonstrated that the CTC-PCS1 panel is highly specific in identifying PCS1-like samples, and the high PCS1 Z score is associated with ARSI resistance samples. In patient bloods, ARSI-resistant samples (ARSI-R, n=14) had significantly higher PCS1 Z scores as compared with ARSI-sensitive samples (ARSI-S, n=17) (Rank-sum test, P=0.003). In the analysis of 8 patients who were initially sensitive to ARSI (ARSI-S) and later developed resistance (ARSI-R), we found that the PCS1 Z score increased from the time of ARSI-S to the time of ARSI-R (Pairwise T-test, P=0.016). Conclusions: Using our new methodology, we developed a first-in-class CTC-RNA assay and demonstrated the feasibility of transforming clinically-relevant tissue-based RNA profiling such as PCS into CTC tests. This approach allows for detecting RNA expression relevant to clinical drug resistance in a non-invasive fashion, which can facilitate patient-specific treatment selection and early detection of drug resistance, a goal in precision oncology.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Neoplastic Cells, Circulating/drug effects , Prostatic Neoplasms, Castration-Resistant/pathology , RNA/analysis , Signal Transduction/drug effects , Transcriptome , Computational Biology , Drug Screening Assays, Antitumor/methods , Humans , Male , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...