Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(2): e0160022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36757205

ABSTRACT

Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.


Subject(s)
Antibodies, Neutralizing , Herpesvirus 8, Human , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Herpesviridae Infections , Herpesvirus 8, Human/immunology , Open Reading Frames/immunology , Vaccination , Viral Proteins/immunology
2.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776277

ABSTRACT

The strongest evidence of the oncogenicity of Epstein-Barr virus (EBV) in vitro is its ability to immortalize human primary B lymphocytes into lymphoblastoid cell lines (LCLs). Yet the underlying mechanisms explaining how the virus tempers the growth program of the host cells have not been fully elucidated. The mitogen-activated protein kinases (MAPKs) are implicated in many cellular processes and are constitutively activated in LCLs. We questioned the expression and regulation of the dual-specificity phosphatases (DUSPs), the main negative regulator of MAPKs, during EBV infection and immortalization. Thirteen DUSPs, including 10 typical and 3 atypical types of DUSPs, were tested. Most of them were downregulated after EBV infection. Here, a role of viral oncogene latent membrane protein 1 (LMP1) in limiting DUSP6 and DUSP8 expression was identified. Using MAPK inhibitors, we found that LMP1 activates extracellular signal-regulated kinase (ERK) or p38 to repress the expression of DUSP6 and DUSP8, with corresponding substrate specificity. Morphologically, overexpression of DUSP6 and DUSP8 attenuates the ability of EBV-immortalized LCL cells to clump together. Mechanistically, apoptosis induced by restoring DUSP6 and DUSP8 in LCLs indicated a novel mechanism for LMP1 to provide a survival signal during EBV immortalization. Collectively, this report provides the first description of the interplay between EBV genes and DUSPs and contributes considerably to the interpretation of MAPK regulation in EBV immortalization.IMPORTANCE Infections by the ubiquitous Epstein-Barr virus (EBV) are associated with a wide spectrum of lymphomas and carcinomas. It has been well documented that activation levels of MAPKs are found in cancer cells to translate various external or intrinsic stimuli into cellular responses. Physiologically, the dual-specificity phosphates (DUSPs) exhibit great ability in regulating MAPK activities with respect to their capability of dephosphorylating MAPKs. In this study, we found that DUSPs were generally downregulated after EBV infection. EBV oncogenic latent membrane protein 1 (LMP1) suppressed DUSP6 and DUSP8 expression via MAPK pathway. In this way, LMP1-mediated MAPK activation was a continuous process. Furthermore, DUSP downregulation was found to contribute greatly to prevent apoptosis of EBV-infected cells. To sum up, this report sheds light on a novel molecular mechanism explaining how EBV maintains the unlimited proliferation status of the immortalized cells and provides a new link to understand EBV-induced B cell survival.


Subject(s)
Dual-Specificity Phosphatases/genetics , Herpesvirus 4, Human/metabolism , Viral Matrix Proteins/metabolism , Apoptosis/genetics , B-Lymphocytes/virology , Cell Line, Tumor , Dual-Specificity Phosphatases/metabolism , Epstein-Barr Virus Infections/virology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, Viral/genetics , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Primary Cell Culture , Viral Matrix Proteins/physiology , Viral Proteins/metabolism , Virus Latency/genetics , Virus Latency/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...