Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421166

ABSTRACT

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Nuclear Proteins , RNA-Binding Proteins , Animals , Humans , Mice , Influenza A Virus, H7N9 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype , Influenza, Human/virology , Mammals , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Virulence , Virus Replication
2.
Viruses ; 15(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38140617

ABSTRACT

Outbreaks of Tembusu virus (TMUV) infection have caused huge economic losses to the poultry industry in China since 2010. However, the potential threat of TMUV to mammals has not been well studied. In this study, a TMUV HB strain isolated from diseased ducks showed high virulence in BALB/c mice inoculated intranasally compared with the reference duck TMUV strain. Further studies revealed that the olfactory epithelium is one pathway for the TMUV HB strain to invade the central nervous system of mice. Genetic analysis revealed that the TMUV HB virus contains two unique residues in E and NS3 proteins (326K and 519T) compared with duck TMUV reference strains. K326E substitution weakens the neuroinvasiveness and neurovirulence of TMUV HB in mice. Remarkably, the TMUV HB strain induced significantly higher levels of IL-1ß, IL-6, IL-8, and interferon (IFN)-α/ß than mutant virus with K326E substitution in the brain tissue of the infected mice, which suggested that TMUV HB caused more severe inflammation in the mouse brains. Moreover, application of IFN-ß to infected mouse brain exacerbated the disease, indicating that overstimulated IFN response in the brain is harmful to mice upon TMUV infection. Further studies showed that TMUV HB upregulated RIG-I and IRF7 more significantly than mutant virus containing the K326E mutation in mouse brain, which suggested that HB stimulated the IFN response through the RIG-I-IRF7 pathway. Our findings provide insights into the pathogenesis and potential risk of TMUV to mammals.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Mice , Flavivirus/physiology , Mammals , Ducks
3.
Poult Sci ; 102(10): 102925, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542938

ABSTRACT

DNA vaccination has great potential to treat or prevent avian influenza pandemics, but the technique may be limited by low immunogenicity and gene delivery in clinical testing. Here, to improve the immune efficacy of DNA vaccines against avian influenza, we prepared and tested the immunogenicity of 4 recombinant DNA vaccines containing 2 or 3 AIV antigens. The results revealed that chickens and mice immunized with plasmid DNA containing 3 antigens (HA gene from H9N2, and NA and HA genes from H5N1) exhibited a robust immune response than chickens and mice immunized with plasmid DNAs containing 2 antigenic genes. Subsequently, this study used pßH9N1SH5 as a model antigen to study the effect of dendritic polylysine (DGL) nanoparticles as a gene delivery system and adjuvant on antigen-specific immunity in mice models. At a ratio of 1:3 DGL/pßH9N1SH5 (w/w), the pßH9N1SH5/DGL NPs showed excellent physical and chemical properties, induced higher levels of HI antibodies, and larger CD3+/CD4+ T lymphocyte and CD3+/CD8+ T lymphocyte population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2 compared with the naked pßH9N1SH5. Therefore, multiantigen gene expression methods using DGL as a delivery system may have broad application prospects in gene therapy.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Nanoparticles , Vaccines, DNA , Animals , Mice , Influenza in Birds/prevention & control , Chickens , Immunity , Antibodies, Viral
4.
Int J Biol Macromol ; 251: 126286, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37579904

ABSTRACT

H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pßH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pßH7N2SH9/DGL NPs by encapsulating the pßH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pßH7N2SH9, including higher levels of HI antibodies than naked pßH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.

5.
Front Microbiol ; 14: 1140141, 2023.
Article in English | MEDLINE | ID: mdl-37426013

ABSTRACT

Since its outbreak in 2010, Tembusu virus (TMUV) has spread widely throughout China and Southeast Asia, causing significant economic losses to the poultry industry. In 2018, an attenuated vaccine called FX2010-180P (180P) was licensed for use in China. The 180P vaccine has demonstrated its immunogenicity and safety in mice and ducks. The potential use of 180P as a backbone for flavivirus vaccine development was explored by replacing the pre-membrane (prM) and envelope (E) genes of the 180P vaccine strain with those of Japanese encephalitis virus (JEV). Two chimeric viruses, 180P/JEV-prM-E and 180P/JEV-prM-ES156P with an additional E protein S156P mutation were successfully rescued and characterized. Growth kinetics studies showed that the two chimeric viruses replicated to similar titers as the parental 180P virus in cells. Animal studies also revealed that the virulence and neuroinvasiveness of the 180P/JEV-prM-E chimeric virus was decreased in mice inoculated intracerebrally (i.c.) and intranasally (i.n.), respectively, compared to the wild-type JEV strain. However, the chimeric 180P/JEV-prM-E virus was still more virulent than the parent 180P vaccine in mice. Additionally, the introduction of a single ES156P mutation in the chimeric virus 180P/JEV-prM-ES156P further attenuated the virus, which provided complete protection against challenge with a virulent JEV strain in the mouse model. These results indicated that the FX2010-180P could be used as a promising backbone for flavivirus vaccine development.

6.
Vet Immunol Immunopathol ; 259: 110590, 2023 May.
Article in English | MEDLINE | ID: mdl-36990004

ABSTRACT

Maternal-derived antibodies (MDAs) are one of reasons why vaccination with the H9N2 inactivated whole virus (IWV) vaccine failed in poultry. Unmethylated CpG motif-containing oligodeoxynucleotides (CpG ODN) shows great potential to overcome MDAs interference in mammals, but whether it has similar characteristics in poultry is still unknown. In the present study, different classes and various copies of CpG ODN motifs were cloned into two different plasmids (pCDNA3.1 or T vector). Immunomodulatory activities and immunoadjuvant efficacy of these CpG ODN plasmids were tested in vitro and in vivo in the presence of passively transferred antibodies (PTAs) that were used to mimic MDAs. Results showed that the T vector enriched with 30 copies of CpG-A ODN and 20 copies of CpG-B ODN (T-CpG-AB) significantly up-regulated mRNA expression of chicken-interferon-α (ch-IFN-α), chicken-interferon-ß (ch-IFN-ß) and chicken-interleukin-12 protein 40 (ch-IL-12p40). When administered as adjuvant of the H9N2 IWV vaccine, the minimal dose of T-CpG-AB plasmid was 30 µg per one-day-old chicken, which could induce strong humoral immune responses in the presence of PTAs. Furthermore, T-CpG-AB plasmid-based vaccine triggered both strong humoral immune responses and cytokines expression in the presence of PTAs in chickens. Overall, our findings suggest that T-CpG-AB plasmid can be an excellent adjuvant candidate for the H9N2 IWV vaccine to overcome MDAs interference in chickens.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens , Antibodies, Viral , Adjuvants, Immunologic , Plasmids/genetics , Vaccines, Inactivated , Interferon-alpha , Oligodeoxyribonucleotides , Mammals
7.
Vet Microbiol ; 272: 109500, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792374

ABSTRACT

In 2021, a chicken Tembusu virus (TMUV) caused outbreaks of a disease characterized by retarded growth and egg production decline in chickens in China. Two TMUV strains SD2021 and GX2021 were isolated from the diseased chickens and phylogenetic analysis of the E gene nucleotide sequence revealed that the chicken TMUV SD2021 and GX2021 were most close to mosquito origin TMUV in Cluster 3.2, which was distinct from the prevalent duck TMUVs in Cluster 2. The TMUV SD2021 caused growth retardation and neurological symptoms in chickens through both intranasal and intramuscular infection routes, but has no direct-contact transmissibility among chickens. The findings of this study highlight the pathogenicity of a chicken adapted mosquito-origin TMUV in chickens in China.


Subject(s)
Culicidae , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Chickens , China/epidemiology , Ducks , Flavivirus Infections/veterinary , Phylogeny , Poultry Diseases/epidemiology
8.
Viruses ; 14(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35746670

ABSTRACT

Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in chickens and results in huge economic losses in the poultry industry worldwide. To correlate the genomic difference with the replication and pathogenicity, phenotypes of three ILTVs isolated from chickens in China from 2016 to 2018 were sequenced by high-throughput sequencing. Based on the entire genome, the isolates GD2018 and SH2017 shared 99.9% nucleotide homology, while the isolate SH2016 shared 99.7% nucleotide homology with GD2018 and SH2017, respectively. Each virus genome contained 82 ORFs encoding 77 kinds of protein, 31 of which share the same amino acid sequence in the three viruses. GD2018 and SH2017 shared 57 proteins with the same amino acid sequence, while SH2016 shared 42 and 41 proteins with the amino acid sequences of GD2018 and SH2017, respectively. SH2016 propagated efficiently in allantoic fluid and on chorioallantoic membranes (CAMs) of SPF chicken embryo eggs, while GD2018 and SH2017 proliferated well only on CAMs. GD2018 propagated most efficiently on CAMs and LMH cells among three isolates. SH2016 caused serious clinical symptoms, while GD2018 and SH2017 caused mild and moderate clinical symptoms in chickens, although the sero of the chickens infected with those three isolates were all positive for anti-ILTV antibody at 14 and 21 days after challenge. Three ILTVs with high genetic homology showed significant differences in the replication in different culture systems and the pathogenicity of chickens, providing basic materials for studying the key determinants of pathogenicity of ILTV.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Gallid , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Chickens , Genome, Viral , Nucleotides
9.
Viruses ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35632674

ABSTRACT

Since 2016, frequent outbreaks of egg-reducing syndromes caused by an unknown virus in duck farms have resulted in huge economic losses in China. The causative virus was isolated and identified as a novel species in Avihepatovirus of the picornavirus family according to the current guidelines of the International Committee on Taxonomy of Viruses (ICVT), and was named the duck egg-reducing syndrome virus (DERSV). The DERSV was most closely related to wild duck avihepatovirus-like virus (WDALV) with 64.0%, 76.8%, 77.5%, and 70.7% of amino acid identities of P1, 2C, 3C, and 3D proteins, respectively. The DERSV had a typical picornavirus-like genomic structure, but with the longest 2A region in the reported picornaviruses so far. Importantly, the clinical symptoms were successfully observed by artificially infecting ducks with DERSV, even in the contact exposed ducks, which suggested that DERSV transmitted among ducks by direct contact. The antibody levels of DERSV were correlated with the emergence of the egg-reducing syndromes in ducks in field. These results indicate that DERSV is a novel emerging picornavirus causing egg-reducing syndrome in ducks.


Subject(s)
Ducks , Picornaviridae , Animals , Genome, Viral , Peptides/genetics , Phylogeny , Syndrome
10.
J Virol ; 96(9): e0037322, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35404081

ABSTRACT

M2 protein of influenza virus plays an important role in virus budding, including membrane scission and vRNP packaging. Three hydrophobic amino acids (91F, 92V, and 94I) at the intracellular domain of the M2 protein constitute a hydrophobic motif, also known as the LC3-interacting region (LIR), whereas the role of this motif remains largely unclear. To explore the role of the 91-94 hydrophobic motif for influenza virus, all three hydrophobic amino acids were mutated to either hydrophilic S or hydrophobic A, resulting in two mutant viruses (WSN-M2/SSS and WSN-M2/AAA) in the background of WSN/H1N1. The results showed that the budding ability of the M2/SSS protein was inhibited and the bilayer membrane integrity of the WSN-M2/SSS virion was impaired based on transmission electron microscopy (TEM), which in turn abolished the resistance to trypsin treatment. Moreover, the mutant WSN-M2/SSS was dramatically attenuated in mice. In contrast, the AAA mutations did not have a significant effect on the budding of the M2 proteins or the bilayer membrane integrity of the viruses, and the mutant WSN-M2/AAA was still lethal to mice. In addition, although the 91-94 motif is an LIR, knocking out of the LC3 protein of A549 cells did not significantly affect the membrane integrity of the influenza viruses propagated on the LC3KO cells, which suggested that the 91-94 hydrophobic motif affected the viral membrane integrity and budding is independent of the LC3 protein. Overall, the hydrophobicity of the 91-94 motif is crucial for the budding of M2, bilayer membrane integrity, and pathogenicity of the influenza viruses. IMPORTANCE M2 plays a crucial role in the influenza virus life cycle. However, the function of the C-terminal intracellular domain of M2 protein remains largely unclear. In this study, we explored the function of the 91-94 hydrophobic motif of M2 protein. The results showed that the reduction of the hydrophobicity of the 91-94 motif significantly affected the budding ability of the M2 protein and impaired the bilayer membrane integrity of the mutant virus. The mouse study showed that the reduction of the hydrophobicity of the 91-94 motif significantly attenuated the mutant virus. All of the results indicated that the hydrophobicity of the 91-94 motif of the M2 protein plays an important role in budding, membrane integrity, and pathogenicity of influenza virus. Our study offers insights into the mechanism of influenza virus morphogenesis, particularly into the roles of the 91-94 hydrophobic motif of M2 in virion assembly and the pathogenicity of the influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Viral Matrix Proteins , Viroporin Proteins , Virus Release , Amino Acids/metabolism , Animals , Hydrophobic and Hydrophilic Interactions , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Mice , Viral Matrix Proteins/metabolism , Viroporin Proteins/metabolism
11.
Viruses ; 14(3)2022 02 22.
Article in English | MEDLINE | ID: mdl-35336854

ABSTRACT

A live attenuated duck Tembusu virus (TMUV) vaccine FX2010-180P (180P) was successfully utilized to prevent TMUV infections in ducks in China. Compared with wild-type TMUV, 180P was highly attenuated and lost transmissibility in ducks. However, the mechanism of the attenuation of 180P remains poorly understood. To explore the key molecular basis of attenuation, chimeric and site mutant viruses in the background of the wild-type TMUV-FX2010 (FX) strain were rescued, and the replication, tissue tropism, and transmissibility were characterized in ducks. The results show that the envelope (E) protein was responsible for attenuation and loss of transmission in ducks. Further studies showed that a D120N amino acid mutation located in domain II of the E protein was responsible for the attenuation and transmissibility loss of 180P in ducks. The D120N substitution resulted in an extra high-mannose type N-linked glycosylation (NLG) in the E protein of 180P compared with the wild-type TMUV, which might restrict the tissue tropism and transmissibility of TMUV in ducks. Our findings elucidate that N120 in the E protein is a key molecular basis of TMUV attenuation in ducks and provide new insight into the role of NLG in TMUV tissue tropism and transmissibility.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Cell Line , Ducks , Flavivirus/genetics , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Mutation , Vaccines, Attenuated
12.
Microbiol Spectr ; 10(1): e0082221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019707

ABSTRACT

The H9N2 subtype avian influenza virus (AIV) has become endemic in poultry globally; however due to its low pathogenicity, it is not under primary surveillance and control in many countries. Recent reports of human infection caused by H9N2 AIV has increased public concern. This study investigated the genetic and antigenic characteristics of H9N2 AIV isolated from local markets in nine provinces in Southern China from 2013 to 2018. We detected an increasing annual isolation rate of H9N2 AIV. Phylogenetic analyses of hemagglutinin (HA) genes suggests that isolated strains were rooted in BJ94 lineage but have evolved into new subgroups (II and III), which derived from subgroup I. The estimated substitution rate of the subgroup III strains was 6.23 × 10-3 substitutions/site/year, which was 1.5-fold faster than that of the average H9N2 HA rate (3.95 × 10-3 substitutions/site/year). Based on the antigenic distances, subgroup II and III strains resulted in two clear antigenic clusters 2 and 3, separated from the vaccine strain F98, cluster 1. New antigenic properties of subgroup III viruses were associated with 11 amino acid changes in the HA protein, suggesting antigenic drift in H9N2 viruses. Our phylogenetic and antigenic analyses of the H9N2 strains circulating in local markets in Southern China provide new insights on the antigenic diversification of H9N2 viruses. IMPORTANCE The H9N2 low pathogenicity avian influenza (LPAI) virus has become endemic in poultry globally. In several Asian countries, vaccination against H9N2 avian influenza virus (AIV) was approved to reduce economic losses in the poultry industry. However, surveillance programs initiated after the introduction of vaccination identified the persistence of H9N2 AIV in poultry (especially in chicken in South Korea and China). Recent reports of human infection caused by H9N2 AIV has increased public concern. Surveillance of H9N2 circulating in poultry in the fields or markets was essential to update the vaccination strategies. This study investigated the genetic and antigenic characteristics of H9N2 AIVs isolated from local markets in nine provinces in Southern China from 2013 to 2018. The discovery of mutations in the hemagglutinin (HA) gene that result in antigenic changes provides a baseline reference for evolutionary studies of H9N2 viruses and vaccination strategies in poultry.


Subject(s)
Evolution, Molecular , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza in Birds/virology , Poultry Diseases/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , Antigenic Drift and Shift , Antigenic Variation , Chickens , China/epidemiology , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/immunology , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Phylogeny , Poultry Diseases/epidemiology
13.
Virol J ; 19(1): 20, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078489

ABSTRACT

BACKGROUND: Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes. METHODS: The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS). RESULTS: We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice. CONCLUSIONS: The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Reassortant Viruses , Viral Proteins , Animals , Chickens , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Mice , Mutation Rate , Reassortant Viruses/genetics , Viral Proteins/genetics
14.
Front Microbiol ; 13: 1107975, 2022.
Article in English | MEDLINE | ID: mdl-36777028

ABSTRACT

Although vaccines have been widely used for many years, they have failed to control H9N2 avian influenza virus (AIV) in the field in China. The high level of maternal-derived antibodies (MDAs) against H9N2 virus contributes to the H9N2 influenza vaccine failure in poultry. The study aimed to generate a new vaccine to overcome MDAs interference in H9N2 vaccination in chickens. We used turkey herpesvirus (HVT) as a vaccine vector to express H9 hemagglutinin (HA) proteins. The recombinant HVT expressing H9 HA proteins (rHVT-H9) was successfully generated and characterized in primary chicken embryonic fibroblasts (CEFs). Western blot and indirect immunofluorescence assay (IFA) showed that the rHVT-H9 consistently expressed HA proteins. In addition, the rHVT-H9 had similar growth kinetics to the parent HVT. Preliminary animal experiments showed that compared to the conventional inactivated whole virus (IWV) vaccine, the rHVT-H9 stimulated robust humoral immunity in chickens with passively transferred antibodies (PTAs) that were used to mimic MDAs. Transmission experiments showed that the rHVT-H9 induced both humoral and cellular immunity in chickens with PTAs. Furthermore, we used mathematical models to quantify the vaccine's efficacy in preventing the transmission of H9N2 AIV. The results showed that the rHVT-H9 reduced the virus shedding period and decreased the reproduction ratio (R) value in chickens with PTAs after homologous challenge. However, the vaccination in this trial did not yet bring R < 1. In summary, we generated a new rHVT-H9 vaccine, which stimulated strong humoral and cellular immunity, reducing virus shedding and transmission of H9N2 AIV even in the presence of PTAs in chickens.

15.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: mdl-34696461

ABSTRACT

The influenza A virus (IAV) is an important cause of respiratory disease worldwide. It is well known that alveolar epithelial cells are the target cells for the IAV, but there is relatively limited knowledge regarding the role of macrophages during IAV infection. Here, we aimed to analyze transcriptome differences in mouse lungs and macrophage (RAW264.7) cell lines infected with either A/California/04/2009 H1N1 (CA09) or A/chicken/SD/56/2015 H9N2 (SD56) using deep sequencing. The uniquely differentially expressed genes (UDEGs) were analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; the results showed that the lungs infected with the two different viruses had different enrichments of pathways and terms. Interestingly, CA09 virus infection in mice was mostly involved with genes related to the extracellular matrix (ECM), while the most significant differences after SD56 infection in mice were in immune-related genes. Gene set enrichment analysis (GSEA) of RAW264.7 cells revealed that regulation of the cell cycle was of great significance after CA09 infection, whereas the regulation of the immune response was most enriched after SD56 infection, which was consistent with analysis results in the lung. Similar results were obtained from weighted gene co-expression network analysis (WGCNA), where cell cycle regulation was extensively activated in RAW264.7 macrophages infected with the CA09 virus. Disorder of the cell cycle is likely to affect their normal immune regulation, which may be an important factor leading to their different prognoses. These results provide insight into the mechanism of the CA09 virus that caused a pandemic and explain the different reactivities of monocytes/macrophages infected by H9N2 and H1N1 IAV subtypes.


Subject(s)
Influenza A virus/genetics , Lung/virology , Orthomyxoviridae Infections/virology , RNA-Seq/methods , Alveolar Epithelial Cells/virology , Animals , Cell Line , Disease Models, Animal , Dogs , Epithelial Cells/virology , Gene Expression Profiling , Gene Ontology , Immunity , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Macrophages , Madin Darby Canine Kidney Cells , Mice , Orthomyxoviridae Infections/immunology , Prognosis , RAW 264.7 Cells , Transcriptome , Virulence
16.
J Virus Erad ; 7(3): 100055, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34621531

ABSTRACT

H9N2 subtype avian influenza has spread dramatically in China ever since first reported in the 1990s. A national vaccination program for poultry was initiated in 1998. Field isolation data show that the widely used inactivated H9N2 vaccine does not provide effective control of the transmission of this low pathogenic avian influenza (LPAI) virus in poultry. Current research has focused on two reasons: (i) insufficient immune response triggered by the vaccination with the inactivated virus, (ii) the occurrence of escape mutants selected by vaccine-induced immune pressure. However, the lack of effectivity of the inactivated virus vaccine to sufficiently reduce transmission has been noticed. We mimicked the natural infection and transmission process of the H9N2 virus in vaccinated and non-vaccinated chickens. A statistical model was used to estimate the transmission rate parameters among vaccinated chickens, varying in serum hemagglutinin inhibition titers (HIT) and non-vaccinated chickens. We demonstrate, for the first time, that the transmission is not sufficiently reduced by the H9N2 vaccine, even when vaccinated chickens have an IgG serum titer (HIT>23), which is considered protective for vaccination against homologous highly pathogenic avian influenza (HPAI) virus. Our study does, on the other hand, cast new light on virus transmission and immune escape of LPAI H9N2 virus in vaccinated chickens populations, and shows that new mitigation strategies against LPAI viruses in poultry are needed.

17.
J Virol ; 95(19): e0101921, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287044

ABSTRACT

Based on our previous studies, we show that the M gene is critical for the replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing the bat M gene with those from human and swine influenza A viruses. However, the key amino acids of the M1 and/or M2 proteins that are responsible for virus replication and pathogenicity remain unknown. In this study, replacement of the PR8 M gene with the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of the chimeric H17 bat influenza virus. Further studies revealed that M1 was more crucial for viral growth and pathogenicity than M2 and that the amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins identified in this study might be important for influenza virus surveillance and could be used to produce live attenuated vaccines in the future. IMPORTANCE The M1 and M2 proteins influence the morphology, replication, virulence, and transmissibility of influenza viruses. Although a few key residues in the M1 and M2 proteins have been identified, whether other residues of the M1 and M2 proteins are involved in viral replication and pathogenicity remains to be discovered. In the background of the chimeric H17 bat influenza virus, the Eurasian avian-like M gene from the A/California/04/2009 virus significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 in viral growth and pathogenicity in vitro and in vivo and that the key amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine applications in the future. These findings provide important contributions to knowledge of the genetic basis of the virulence of influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Orthomyxoviridae/growth & development , Orthomyxoviridae/pathogenicity , Viral Matrix Proteins/metabolism , Amino Acids/metabolism , Animals , Cell Line , Chiroptera , Genes, Viral , Humans , Lung/virology , Mice , Orthomyxoviridae/genetics , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Reassortant Viruses/pathogenicity , Turbinates/virology , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virulence , Virus Replication
18.
Microb Pathog ; 157: 104992, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044053

ABSTRACT

Previous studies have shown that chimeric bat influenza viruses can be generated by reverse genetic system. However, the roles of the surface or internal genes of chimeric bat influenza viruses in viral replication and virulence in different host species were still not completely understood. In this study, we generated a chimeric H9N2 bat virus with both HA and NA surface genes from the avian A2093/H9N2 virus and compared its replication and virulence with the chimeric H1N1 bat virus with both HA and NA from the PR8/H1N1 virus in vitro and in mice. The chimeric H1N1 virus showed significantly higher replication in mammalian and avian cells and significantly higher virulence in mice than the chimeric H9N2 virus. Moreover, the chimeric H9N2 virus with the bat influenza internal M gene showed a higher replication in mammalian cells than in avian cells. While the chimeric H9N2 virus with the avian-origin viral M gene displayed a higher replication than that with the bat influenza M gene in avian cells, which likely resulted from increased receptor binding ability to α 2,3 sialic acid linked glycans of the former virus. Our study indicates that bat influenza internal genes are permissive in both mammalian and avian cells, and the bat influenza internal M gene shows more compatibility in mammals than in the avian host. Although the surface genes play more critical roles for viral replication in different host substrates, influenza M gene also potentially impacts on replication, virulence and host tropism.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Influenza A Virus, H9N2 Subtype/genetics , Mammals , Mice , Orthomyxoviridae Infections/veterinary , Virulence , Virus Replication
19.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33177197

ABSTRACT

Neuraminidase (NA) has multiple functions in the life cycle of influenza virus, especially in the late stage of virus replication. Both of hemagglutinin (HA) and NA are highly glycosylated proteins. N-linked glycosylation (NLG) of HA has been reported to contribute to immune escape and virulence of influenza viruses. However, the function of NLG of NA remains largely unclear. In this study, we found that NLG is critical for budding ability of NA. Tunicamycin treatment or NLG knockout significantly inhibited the budding of NA. Further studies showed that the NLG knockout caused attenuation of virus in vitro and in vivo Notably, the NLG at 219 position plays an important role in the budding, replication, and virulence of H1N1 influenza virus. To explore the underlying mechanism, the unfolded protein response (UPR) was determined in NLG knockout NA overexpressed cells, which showed that the mutant NA was mainly located in the endoplasmic reticulum (ER), the UPR markers BIP and p-eIF2α were upregulated, and XBP1 was downregulated. All the results indicated that NLG knockout NA was stacked in the ER and triggered UPR, which might shut down the budding process of NA. Overall, the study shed light on the function of NLG of NA in virus replication and budding.IMPORTANCE NA is a highly glycosylated protein. Nevertheless, how the NLG affects the function of NA protein remains largely unclear. In this study, we found that NLG plays important roles in budding and Neuraminidase activity of NA protein. Loss of NLG attenuated viral budding and replication. In particular, the 219 NLG site mutation significantly attenuated the replication and virulence of H1N1 influenza virus in vitro and in vivo, which suggested that NLG of NA protein is a novel virulence marker for influenza viruses.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/physiology , Neuraminidase/metabolism , Orthomyxoviridae Infections/virology , Viral Proteins/metabolism , Virulence , Virus Replication , Animals , Dogs , Female , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Neuraminidase/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Viral Proteins/genetics
20.
Sci Rep ; 10(1): 20583, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239647

ABSTRACT

H6 subtype avian influenza viruses spread widely in birds and pose potential threats to poultry and mammals, even to human beings. In this study, the evolution and pathogenicity of H6 AIVs isolated in live poultry markets from 2011 to 2017 were investigated. These H6 isolates were reassortant with other subtypes of influenza virus with increasing genomic diversity. However, no predominant genotype was found during this period. All of the H6N2 and most of the H6N6 isolates replicated efficiently in lungs of inoculated mice without prior adaptation. All of the H6N2 and two H6N6 isolates replicated efficiently in nasal turbinates of inoculated mice, which suggested the H6N2 viruses were more adaptive to the upper respiratory tract of mice than the H6N6 viruses. One of H6N2 virus caused systemic infection in one out of three inoculated mice, which indicated that H6 avian influenza virus, especially the H6N2 viruses posed a potential threat to mammals. Five H6 strains selected from different genotypes caused no clinical signs to inoculated chickens, and their replication were limited in chickens since the viruses have been detected only from a few tissues or swabs at low titers. Our study strongly suggests that the H6 avian influenza virus isolated from live poultry markets pose potential threat to mammals.


Subject(s)
Influenza in Birds/epidemiology , Influenza in Birds/genetics , Orthomyxoviridae/genetics , Animals , Biological Evolution , Birds , Chickens/genetics , Chickens/virology , China/epidemiology , Evolution, Molecular , Genotype , Influenza A virus/genetics , Influenza A virus/isolation & purification , Mice/genetics , Mice/virology , Orthomyxoviridae/isolation & purification , Phylogeny , RNA, Viral/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...