Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Glob Antimicrob Resist ; 38: 27-34, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821444

ABSTRACT

OBJECTIVES: Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS: Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS: Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS: Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.

2.
Microbiol Spectr ; 12(7): e0050924, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809017

ABSTRACT

Bacterial genotyping through whole-genome sequencing plays a crucial role in disease surveillance and outbreak investigations in public health laboratories. This study assessed the effectiveness of Oxford Nanopore Technologies (ONT) sequencing in the genotyping of Listeria monocytogenes and Salmonella enterica serovar Enteritidis. Our results indicated that ONT sequences, generated with the R10.4.1 flow cell and basecalled using the Dorado 0.5.0 Super Accurate 4.3 model, exhibited comparable accuracy to Illumina sequences, effectively discriminating among bacterial strains from outbreaks. These findings suggest that ONT sequencing has the potential to be a promising tool for rapid whole-genome sequencing of bacterial pathogens in public health laboratories for epidemiological investigations. IMPORTANCE: This study unveils that Oxford Nanopore Technologies sequencing, by itself, holds the potential to serve as a whole-genome sequencing-based genotyping tool in public health laboratories, enabling routine subtyping of bacterial isolates for disease surveillance and outbreak investigations.


Subject(s)
Genome, Bacterial , Listeria monocytogenes , Nanopore Sequencing , Salmonella enteritidis , Whole Genome Sequencing , Listeria monocytogenes/genetics , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Salmonella enteritidis/genetics , Salmonella enteritidis/classification , Salmonella enteritidis/isolation & purification , Whole Genome Sequencing/methods , Nanopore Sequencing/methods , Genome, Bacterial/genetics , Humans , Listeriosis/microbiology , Genotype , Disease Outbreaks , Genotyping Techniques/methods , Salmonella Infections/microbiology
3.
IJID Reg ; 11: 100372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799797

ABSTRACT

Objectives: Salmonella, a zoonotic pathogen, significantly impacts global human health. Understanding its serotype distribution and antimicrobial resistance is crucial for effective control measures and medical interventions. Methods: We collected Salmonella isolates and demographic data from Taiwanese hospitals between 2004 and 2022, analyzing their serotypes and antimicrobial susceptibility. Results: Among 40,595 isolates, salmonellosis predominated in children aged 0-4 (61.2%) years and among males (55.2%). Males also showed higher rates of extraintestinal infections (18.1% vs 16.0%, P <0.001), particularly, in the ≥65 years age group (52.4%). The top five serovars were S. Enteritidis (32.8%), S. Typhimurium (21.7%), S. Newport (6.2%), S. Stanley (4.7%), and S. Anatum (4.0%). Notably, S. Enteritidis prevalence increased from 23.9% (2004-2005) to 43.6% (2021-2022). Antimicrobial resistance was high, with a 51.6% multidrug resistance (MDR) rate. Disturbingly, MDR rates exceeded 90% in serovars Albany, Schwarzengrund, Choleraesuis, and Goldcoast. Resistance to key therapeutic agents, azithromycin, cefotaxime, and ciprofloxacin, exhibited concerning upward trends, and the surge in cefotaxime and ciprofloxacin resistance was closely linked to the emergence and spread of MDR S. Anatum and S. Goldcoast clones. Conclusions: Prioritizing control measures against S. Enteritidis and closely monitoring the prevalence and spread of MDR clones are imperative to mitigate Salmonella infections in Taiwan.

4.
Front Microbiol ; 14: 1291540, 2023.
Article in English | MEDLINE | ID: mdl-38143864

ABSTRACT

Carbapenem-resistant ST11_KL64 Klebsiella pneumoniae emerged as a significant public health concern in Taiwan, peaking between 2013 and 2015, with the majority of isolates exhibiting OXA-48 as the sole carbapenemase. In this study, we employed whole-genome sequencing to investigate the molecular underpinnings of ST11_KL64 isolates collected from 2013 to 2021. Phylogenomic analysis revealed a notable genetic divergence between the ST11_KL64 strains in Taiwan and those in China, suggesting an independent evolutionary trajectory. Our findings indicated that the ST11_KL64_Taiwan lineage originated from the ST11_KL64 lineage in Brazil, with recombination events leading to the integration of ICEKp11 and a 27-kb fragment at the tRNAASN sites, shaping its unique genomic landscape. To further elucidate this unique sublineage, we examined the plasmid contents. In contrast to ST11_KL64_Brazil strains, which predominantly carried blaKPC-2, ST11_KL64_Taiwan strains exhibited the acquisition of an epidemic blaOXA-48-carrying IncL plasmid. Additionally, ST11_KL64_Taiwan strains consistently harbored a multi-drug resistance IncC plasmid, along with a collection of gene clusters that conferred resistance to heavy metals and the phage shock protein system via various Inc-type plasmids. Although few, there were still rare ST11_KL64_Taiwan strains that have evolved into hypervirulent CRKP through the horizontal acquisition of pLVPK variants. Comprehensive characterization of the high-risk ST11_KL64 lineage in Taiwan not only sheds light on its epidemic success but also provides essential data for ongoing surveillance efforts aimed at tracking the spread and evolution of ST11_KL64 across different geographical regions. Understanding the molecular underpinnings of CRKP evolution is crucial for developing effective strategies to combat its emergence and dissemination.

5.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37787563

ABSTRACT

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Serogroup , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Salmonella , Escherichia coli/genetics , Carbapenems/pharmacology , Salmonella enterica/genetics , Salmonella enterica/metabolism , Porins/genetics , Microbial Sensitivity Tests
6.
J Glob Antimicrob Resist ; 35: 128-136, 2023 12.
Article in English | MEDLINE | ID: mdl-37709137

ABSTRACT

OBJECTIVES: We investigated the temporal trends of Salmonella enterica serovar Typhimurium (S. Typhimurium) clones in Taiwan from 2004 to 2019, focusing on antimicrobial resistance (AMR), resistance genetic determinants, and plasmid types. METHODS: Salmonella isolates were characterized using pulsed-field gel electrophoresis (PFGE), whole-genome sequencing, and antimicrobial susceptibility testing. Clones were defined using PFGE clustering and the hierarchical cgMLST clustering (HierCC) assignments. RESULTS: Seven major S. Typhimurium clones, HC100_2, 13, 41, 305, 310, 501, and 46261, accounted for 97.6% (8079/8275) of human isolates in Taiwan. Each clone displayed a unique AMR profile, resistance genetic determinants, and plasmid types. Four highly resistant clones (HC100_2, 41, 305, and 310) exhibited multiple resistance in 86.5% to 96.1% of isolates. HC100_305 and HC100_2 were pandemic multidrug-resistant clones, characterized by resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) and ASSuT, respectively. The prevalence of the ACSSuT clone decreased from 68.7% of S. Typhimurium isolates in 2004 to 1.7% in 2019, while the ASSuT clone emerged in 2007 and became the largest clone after 2010. Several plasmids, including IncHI2-IncHI2A, IncC, IncFIB(K), and IncI1-1(α), carried multiple resistance genes or were associated with the carriage of mph(A), blaCMY-2, and blaDHA-1. CONCLUSIONS: Between 2004 and 2019, Taiwan experienced the emergence, prevalence, and subsequent decline of several highly resistant S. Typhimurium clones. The clones defined using the HierCC approach have global comparability. The increasing resistance to third-generation cephalosporins, cephamycins, ciprofloxacin, and azithromycin in recent years poses a significant medical concern.


Subject(s)
Anti-Bacterial Agents , Salmonella typhimurium , Humans , Anti-Bacterial Agents/pharmacology , Serogroup , Taiwan/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial
7.
Emerg Infect Dis ; 29(8): 1634-1637, 2023 08.
Article in English | MEDLINE | ID: mdl-37486207

ABSTRACT

A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.


Subject(s)
Salmonella enterica , beta-Lactamases , United States , Animals , Serogroup , Taiwan/epidemiology , beta-Lactamases/genetics , Salmonella enterica/genetics , Chromosomes , Anti-Bacterial Agents/pharmacology , Chickens , Plasmids , Drug Resistance, Multiple, Bacterial/genetics
8.
Microbiol Spectr ; 11(1): e0336422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688703

ABSTRACT

Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.


Subject(s)
Azithromycin , Salmonella enterica , Humans , Azithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Taiwan , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Salmonella/genetics , Microbial Sensitivity Tests , Salmonella enterica/genetics
9.
Article in English | MEDLINE | ID: mdl-33685895

ABSTRACT

We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin and the element could move into the phylogenetically distant Vibrio cholerae via conjugation.

10.
Microbiol Spectr ; 10(6): e0182522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36222695

ABSTRACT

Listeria monocytogenes is a life-threatening foodborne pathogen. Here, we report the genomic characterization of a nationwide dataset of 411 clinical and 82 food isolates collected in Taiwan between 2014 and 2019. The observed incidence of listeriosis increased from 0.83 to 7 cases per million population upon implementation of mandatory notification in 2018. Pregnancy-associated cases accounted for 2.8% of human listeriosis and all-cause 7-day mortality was of 11.9% in nonmaternal-neonatal listeriosis. L. monocytogenes was isolated from 90% of raw pork and 34% of chicken products collected in supermarkets. Sublineages SL87, SL5, and SL378 accounted for the majority (65%) of clinical cases. SL87 and SL378 were also predominant (57%) in food products. Five cgMLST clusters accounted for 57% clinical cases, suggesting unnoticed outbreaks spanning up to 6 years. Mandatory notification allowed identifying the magnitude of listeriosis in Taiwan. Continuous real-time genomic surveillance will allow reducing contaminating sources and disease burden. IMPORTANCE Understanding the phylogenetic relationship between clinical and food isolates is important to identify the transmission routes of foodborne diseases. Here, we performed a nationwide study between 2014 and 2019 of both clinical and food Listeria monocytogenes isolates and sequenced their genomes. We show a 9-fold increase in listeriosis reporting upon implementation of mandatory notification. We found that sublineages SL87 and SL378 predominated among both clinical (50%) and food (57%) isolates, and identified five cgMLST clusters accounting for 57% of clinical cases, suggestive of potential protracted sources of contamination over up to 6 years in Taiwan. These findings highlight that mandatory declaration is critical in identifying the burden of listeriosis, and the importance of genome sequencing for a detailed characterization of the pathogenic L. monocytogenes genotypes circulating in Asia.


Subject(s)
Listeria monocytogenes , Listeriosis , Infant, Newborn , Humans , Listeria monocytogenes/genetics , Taiwan/epidemiology , Phylogeny , Food Microbiology , Genome, Bacterial , Multilocus Sequence Typing , Whole Genome Sequencing , Listeriosis/epidemiology , Genomics , Disease Outbreaks
11.
Microbiol Spectr ; 10(5): e0207722, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36129301

ABSTRACT

CG23-I lineage constitutes the majority of hypervirulent Klebsiella pneumoniae. A diabetic patient suffered six episodes of infections caused by CG23-I K. pneumoniae. A total of nine isolates were collected in 2020. We performed whole-genome sequencing to elucidate the within-patient evolution of CG23-I K. pneumoniae. The maximum pairwise difference among the nine longitudinally collected isolates was five single nucleotide polymorphisms. One of the mutations was at the Asp87 position of GyrA. Four indels were identified, including an initiator tRNAfMet duplication, a tRNAArg deletion, a 7-bp insertion, and a 22-bp deletion. All 9 isolates had the genomic features of CG23-I K. pneumoniae, a chromosome-borne ICEKp10, and a large virulence plasmid. The carriage of a complete set of genes for the biosynthesis of colibactin by ICEKp10 gave the nine isolates an ability to cause DNA damage to RAW264.7 cells. Compared with the initial isolate, the last isolate with an additional copy of initiator tRNAfMet grew faster in a nutrient-limiting condition and exhibited enhanced virulence in BALB/c mice. Collectively, we characterized the within-patient microevolution of CG23-I K. pneumoniae through an in-depth comparison of genome sequences. Using the in vitro experiments and mouse models, we also demonstrated that these genomic alterations endowed the isolates with advantages to pass through in vivo selection. IMPORTANCE CG23-I is a significant lineage of hypervirulent Klebsiella pneumoniae. This study characterizes the within-patient microevolution of CG23-I K. pneumoniae. Selective pressures from continuous use of antibiotics favored point mutations contributing to bacterial resistance to antibiotics. The duplication of an initiator tRNAfMet gene helped CG23-I K. pneumoniae proliferate to reach a maximal population size during infections. For longer persistence inside a human host, the large virulence plasmid evolved with more flexible control of replication through duplication of the iteron-1 region. With the genomic alterations, the last isolate had a growth advantage over the initial isolate and exhibited enhanced virulence in BALB/c mice. This study gives us a deeper understanding of the genome evolution during the within-patient pathoadaptation of CG23-I K. pneumoniae.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Mice , Animals , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , RNA, Transfer, Met , Reinfection , RNA, Transfer, Arg , Genome, Bacterial/genetics , Plasmids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
12.
Microbiol Spectr ; 10(4): e0088222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862973

ABSTRACT

We present the demographic features of invasive meningococcal disease (IMD) in Taiwan between 1993 and 2020 and the genetic characteristics of Neisseria meningitidis isolates recovered from 2003 to 2020. IMD was rare in Taiwan between 1993 and 2020, with an annual incidence ranging from 0.009 to 0.204 per 100,000 people. The case fatality rate (CFR) declined from 18.1% for patients in 1993 to 2002 to 9.8% in 2003 to 2020. Infants less than 12 months were most susceptible to the disease. N. meningitidis serogroup B (NmB) was most predominant, responsible for 81.2% (134/165) of the IMD cases in 2003 to 2020. The majority of the isolates recovered from 2003 to 2020 belonged to 4 worldwide-spread hyperinvasive clonal complexes (cc), cc4821 (30.3%), cc32 (19.4%), cc41/44 (12.7%), cc23 (7.3%), and also a newly assigned clonal complex, cc3439 (10.3%). Core genome multilocus sequence typing (cgMLST) profile comparisons revealed that the cc4821 isolates with a T-to-I substitution at position 91 in gyrA were closely related to those originating from China. Of the 165 isolates, 20.0% and 53.3% were predicted to be covered by the Bexsero and Trumenba vaccines, respectively, whereas, 77.0% and 46.7% remained indeterminate. In conclusion, N. meningitidis isolates recovered in Taiwan between 2003 and 2020 were mostly highly diverse. Most IMD cases appeared sporadically and were caused by localized strains, although some patients were infected by recently introduced strains. cgMLST is a powerful tool for the rapid comparison of genetic relatedness among a large number of isolates. cgMLST profiling, based on 1,241 core genes, and strain tracking can be performed on the website of cgMLST@Taiwan (http://rdvd.cdc.gov.tw/cgMLST/). IMPORTANCE N. meningitidis can cause life-threatening invasive meningococcal disease (IMD), including meningitis and sepsis, resulting in a high CFR and long-term sequelae in survivors. Here, we report the demographic features of IMD in Taiwan over a 28-year period (1993 to 2020) and the genetic characteristics of N. meningitidis isolates recovered from patients with IMD over an 18-year period (2003 to 2020). We conducted a whole-genome sequence analysis to characterize the genetic features of the isolates and developed a cgMLST scheme for epidemiological investigation and strain tracking. The findings can be beneficial in understanding the epidemiology of IMD in Taiwan, the genetic characteristics of the bacterial strains, and the distribution of vaccine antigens for vaccine development and implementation.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Humans , Incidence , Infant , Meningococcal Infections/epidemiology , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Multilocus Sequence Typing , Neisseria meningitidis/genetics , Serogroup , Taiwan/epidemiology
13.
J Glob Antimicrob Resist ; 29: 331-338, 2022 06.
Article in English | MEDLINE | ID: mdl-35413451

ABSTRACT

OBJECTIVES: A nosocomial salmonellosis outbreak caused by Salmonella enterica serovar Goldcoast occurred in a respiratory care ward (RCW) of a hospital in central Taiwan between December 24, 2020, and January 21, 2021. Ten isolates recovered from 10 RCW residents were resistant to extended-spectrum cephalosporins. The resistance mechanism needs to be investigated. METHODS: Whole-genome sequencing and antimicrobial susceptibility testing were conducted to determine the genetic resistance determinants and the phenotypic resistance in the isolates. RESULTS: Each of the 10 outbreak isolates harbored an IncHI2 plasmid that carried 15 antimicrobial resistance genes aac(3)-IId, aadA22, aph(3')-Ia, aph(6)-Id, arr-2, blaCTX-M-55, blaLAP-2, blaTEM-1, dfrA14, floR, lnu(F), qnrS13, sul2, sul3, tet(A), an efflux pump regulatory gene ramAp and an IncL plasmid carried a blaOXA-48. The outbreak strains were expected to be resistant to numerous antimicrobials, including aminoglycosides, b-lactams /inhibitors, tetracycline, rifamycin, lincosamide, sulfonamides, trimethoprim, phenicols, fluoroquinolones, and carbapenems. Two outbreak isolates displayed higher minimum inhibitory concentrations than the other eight isolates to cefmetazole and carbapenems, which was linked to a deficiency of a major facilitator superfamily transporter in the two isolates. CONCLUSION: The carbapenem-resistant outbreak strains could have been derived from extensively drug-resistant S. enterica Goldcoast strains, which have been a major pathogen in Taiwan since 2018, through the acquisition of a blaOXA-48-carrying plasmid. Special efforts are needed in Taiwan to monitor the spread of extremely resistant strains.


Subject(s)
Cross Infection , Salmonella Infections , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cross Infection/epidemiology , Disease Outbreaks , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Humans , Salmonella , Salmonella Infections/epidemiology , Serogroup , Taiwan/epidemiology
14.
J Microbiol Immunol Infect ; 55(1): 102-106, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33485793

ABSTRACT

BACKGROUND: Cholera, a rapidly dehydrating diarrheal disease caused by toxigenic Vibrio cholerae, is a leading cause of morbidity and mortality in some regions of the world. Core genome multilocus sequence typing (cgMLST) is a promising approach in generating genetic fingerprints from whole-genome sequencing (WGS) data for strain comparison among laboratories. METHODS: We constructed a V. cholerae core gene allele database using an in-house developed computational pipeline, a database with cgMLST profiles converted from genomic sequences from the National Center for Biotechnology Information, and built a REST-based web accessible via the Internet. RESULTS: We built a web service platform-cgMLST@Taiwan and installed a V. cholerae allele database, a cgMLST profile database, and computational tools for generating V. cholerae cgMLST profiles (based on 3,017 core genes), performing rapid global strain tracking, and clustering analysis of cgMLST profiles. This web-based platform provides services to researchers, public health microbiologists, and physicians who use WGS data for the investigation of cholera outbreaks and tracking of V. cholerae strain transmission across countries and geographic regions. The cgMLST@Taiwan is accessible at http://rdvd.cdc.gov.tw/cgMLST.


Subject(s)
Cholera , Databases, Genetic , Vibrio cholerae , Cholera/epidemiology , Genome, Bacterial/genetics , Humans , Internet , Multilocus Sequence Typing , Phylogeny , Taiwan , Vibrio cholerae/genetics , Whole Genome Sequencing
15.
Antimicrob Agents Chemother ; 66(1): e0173621, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34748382

ABSTRACT

Campylobacter coli and Campylobacter Jejuni are highly resistant to most therapeutic antimicrobials in Taiwan; rapid diagnostics of resistance in bacterial isolates is crucial for the treatment of campylobacteriosis. We characterized 219 (40 C. coli and 179 C. jejuni) isolates recovered from humans from 2016 to 2019 using whole-genome sequencing to investigate the genetic diversity among isolates and the genetic resistance determinants associated with antimicrobial resistance. Susceptibility testing with 8 antimicrobials was conducted to assess the concordance between phenotypic resistance and genetic determinants. The conventional and core genome multilocus sequence typing analysis revealed diverse clonality among the isolates. Mutations in gyrA (T86I, D90N), rpsL (K43R, K88R), and 23S rRNA (A2075G) were found in 91.8%, 3.2%, and 6.4% of the isolates, respectively. The horizontally transferable resistance genes ant(6)-I, aad9, aph(3')-IIIa, aph(2″), blaOXA, catA/fexA, cfr(C), erm(B), lnu, sat4, and tet were identified in 24.2%, 21.5%, 33.3%, 11.9%, 96.3%, 10.0%, 0.9%, 6.8%, 3.2%, 13.2%, and 96.3%, respectively. High-level resistance to 8 antimicrobials in isolates was 100% predictable by the known resistance determinants, whereas low-level resistance to azithromycin, clindamycin, nalidixic acid, ciprofloxacin, and florfenicol in isolates was associated with sequence variations in CmeA and CmeB of the CmeABC efflux pump. Resistance-enhancing CmeB variants were identified in 62.1% (136/219) of isolates. In conclusion, an extremely high proportion of C. coli (100%) and C. jejuni (88.3%) were multidrug-resistant, and a high proportion (62.5%) of C. coli isolates were resistant to azithromycin, erythromycin, and clindamycin, which would complicate the treatment of invasive campylobacteriosis in this country.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Taiwan/epidemiology
16.
Emerg Infect Dis ; 26(1): 164-166, 2020 01.
Article in English | MEDLINE | ID: mdl-31855545

ABSTRACT

We investigated the epidemiology of cholera in Taiwan during 2002-2018. Vibrio cholerae sequence type (ST) 75 clone emerged in 2009 and has since become more prevalent than the ST69 clone from a previous pandemic. Closely related ST75 strains have emerged in 4 countries and may now be widespread in Asia.


Subject(s)
Cholera/epidemiology , Communicable Diseases, Emerging/microbiology , Vibrio cholerae O1 , Adolescent , Adult , Aged , Child , Cholera/microbiology , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks , Electrophoresis, Polyacrylamide Gel , Female , Humans , Male , Middle Aged , Multilocus Sequence Typing , Prevalence , Taiwan/epidemiology , Vibrio cholerae O1/genetics , Whole Genome Sequencing , Young Adult
17.
J Antimicrob Chemother ; 75(2): 318-326, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31665400

ABSTRACT

OBJECTIVES: Epidemic spread of OXA-48-producing Klebsiella pneumoniae, mainly mediated by the transmission of a blaOXA-48-carrying plasmid, has threatened global health during the last decade. Since its introduction to Taiwan in 2013, OXA-48 has become the second most common carbapenemase. We described the transmission and evolution of an OXA-producing K. pneumoniae clone in a single hospital. METHODS: Twenty-two OXA-48 K. pneumoniae were isolated between October 2013 and December 2015. Comparative genomic analysis was performed based on the WGS data generated with Illumina and MinION techniques. RESULTS: Seventeen of the 22 OXA-48 K. pneumoniae that belonged to ST11, with the same capsular genotype, KL64, and differed from each other by seven or fewer SNPs, were considered outbreak strains. Eight of the 17 outbreak strains harboured a 65499 bp blaOXA-48-carrying IncL plasmid (called pOXA48). pOXA48 was absent from the remaining nine strains. Instead, a 24.9 kb blaOXA-48-carrying plasmid fragment was integrated into a prophage region of their chromosomes. Transmission routes of the ST11_KL64 K. pneumoniae sublineages, which carried either pOXA48 or chromosomally integrated blaOXA-48, were reconstructed. CONCLUSIONS: Clonal expansion of ST11_KL64 sublineages contributed to the nosocomial outbreak of OXA-48 K. pneumoniae. The chromosome-borne blaOXA-48 lineage emerged during a 2 year period in a single hospital. Dissemination of OXA-48, which is vertically transmitted in K. pneumoniae even in the absence of selective pressure from antimicrobials, deserves public health attention.


Subject(s)
Cross Infection/microbiology , Evolution, Molecular , Klebsiella Infections , Klebsiella pneumoniae , Bacterial Proteins/genetics , Genotype , Hospitals , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/transmission , Klebsiella pneumoniae/genetics , Plasmids/genetics , Taiwan/epidemiology , beta-Lactamases/genetics
18.
Article in English | MEDLINE | ID: mdl-31383653

ABSTRACT

Salmonella enterica serovar Goldcoast infection was rare in Taiwan; it was not detected in routine surveillance from 2004 to 2013. This serovar was first identified in 2014, but the frequency of infection remained low until 2017. From 2014 to 2016, all but one isolate was pan-susceptible. S Goldcoast infections abruptly increased in 2018, and all isolates were multidrug-resistant (MDR). All MDR isolates harbored an IncHI2 plasmid, and the majority carried 14 antimicrobial resistance genes, aac(3)-IId, aadA22, aph(3')-Ia, aph(6)-Id, blaTEM-1B, blaCTX-M-55, lnu(F), floR, qnrS13, arr-2, sul2, sul3, tet(A), and dfrA14. S Goldcoast strains recovered in Taiwan and 96 of 99 strains from Germany, the Netherlands, the United Kingdom, and the United States belonged to sequence type 358 (ST358). Whole-genome single-nucleotide polymorphism and core genome multilocus sequence type analyses revealed that all strains of the ST358 clone shared a high degree of genetic relatedness. The present study highlighted that a dramatic increase in S Goldcoast infections followed the emergence of MDR strains and indicated that a genetically closely related S Goldcoast ST358 clone may have widespread significance internationally.


Subject(s)
Salmonella enterica/genetics , Drug Resistance, Multiple, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide/genetics , Taiwan
19.
Article in English | MEDLINE | ID: mdl-28757888

ABSTRACT

The human polyomaviruses BK (BKPyV) and JC (JCPyV) are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs) and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

20.
Am J Med Genet A ; 149A(12): 2775-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19921641

ABSTRACT

A satellited short arm of the Y chromosome (Yps) is rare. Only one de novo case of Yps has been documented. Here we report the prenatal diagnosis of Yps in a male fetus with a karyotype, 46,XYps. Family chromosome study showed that the father and a sister had a satellited short arm of the X chromosome (Xps). A phenotypically normal male child with the Yps was delivered. This is the first familial case showing a satellite "jumping" from Xp to Yp. We propose that it resulted from a crossover within the pseudoautosomal region 1 (PAR1) on the distal Xp and Yp during paternal meiosis. In addition to the rare translocation mentioned above, relocation of the SRY gene onto an autosome in XX males is also a rare event. Herein we report a phenotypically normal male fetus with a 46,XX karyotype. Fluorescence in situ hybridization (FISH) study showed that the SRY locus had been transferred to the terminal short arm of a chromosome 3. The terminal short arm deletion of this chromosome 3 was also confirmed by FISH study with a subtelomeric probe and the breakpoint of the terminal deletion was estimated between 446 and 664 kb from the 3p telomere by real-time qPCR study with a gene sequence and STS markers in this region. A healthy boy was delivered at 37 weeks of gestation. At 1-year follow-up, the child's growth pattern and development were appropriate for age.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, X/genetics , Gene Rearrangement/genetics , Sex-Determining Region Y Protein/genetics , Adult , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Y/genetics , Electrophoresis , Exons/genetics , Family , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Pedigree , Pregnancy , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...