Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 473: 134630, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762988

ABSTRACT

Decachlorobiphenyl (PCB-209) can be widely detected in suspended particles and sediments due to its large hydrophobicity, and some of its transformation products may potentially threaten organisms through the food chain. Here we investigate the photochemical transformation of PCB-209 on suspended particles from the Yellow River. It was found that the suspended particles had an obvious shielding effect to largely inhibit the photodegradation of PCB-209. Meanwhile, the presence of inorganic ions (e.g. Mg2+ and NO3-) and organic matters (e.g. humic acid, HA) in the Yellow River water inhibited the reaction. The main transformation products of PCB-209 were lower-chlorinated and hydroxylated polychlorinated biphenyls (OH-PCBs), and small amounts of pentachlorophenol (PCP) and polychlorinated dibenzofurans (PCDFs) were also observed. The mechanisms of PCP formation by double •OH attacking carbon bridge and PCDFs formation by elimination reaction of ionic state OH-PCBs were proposed using theoretical calculations, which provided some new insights into the inter-transformations between persistent organic pollutants. In combination with VEGA and EPI Suite software, some intermediates such as PCDFs were more toxic to organisms than PCB-209. This study deepens the understanding of the transformation behavior of PCB-209 on suspended particles under sunlight.

2.
Toxics ; 12(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251010

ABSTRACT

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 µM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

3.
Chemosphere ; 316: 137774, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642137

ABSTRACT

The removal of Bisphonel AF (BPAF) by zero-valent iron activated persulfate (Fe0/PS) system was systematically evaluated in this work. 30.0 µM BPAF was removed by 94.4% in 60 min of treatment under optimal conditions of pH = 3.0 and [PS] = [Fe0] = 3.0 mM. Cl- significantly accelerated the removal of BPAF, resulting from accelerated Fe2+ release and reactive chlorine species (RCS) formation. Liquid chromatography-time-of-flight-mass spectrometry identified thirteen degradation products, and bond breaking, coupling reactions, hydroxylation and sulfate addition were considered as the major transformation pathways. When Cl- was present, six new chlorinated byproducts were also generated. Based on density functional theory (DFT) calculations, the occurrence of radical addition reactions was verified and the preferential reaction channels were determined. Significantly BPAF degradation products were less toxic, according to toxicity assessment by the ECOSAR program. Moreover, a high removal efficiency of BPAF (>90%) was also obtained in the three actual water matrixes. The present work demonstrates the feasibility of Fe0/PS system for treating BPAF, which could also provide new insights into the influence of coexisting Cl- on the environmental fate of organic pollutants in sulfate radicals based advanced oxidation processes.


Subject(s)
Chlorides , Water Pollutants, Chemical , Iron/chemistry , Kinetics , Water Pollutants, Chemical/toxicity , Oxidation-Reduction , Sulfates/chemistry
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 485-491, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35728849

ABSTRACT

OBJECTIVE: To compare and analyze the clinical features of patients with severe coronavirus disease 2019 (sCOVID-19) and severe community acquired pneumonia (sCAP) who meet the diagnostic criteria for severe pneumonia of the Infectious Diseases Society of America/American Thoracic Society (IDSA/ATS). METHODS: A retrospective comparative analysis of the clinical records of 116 patients with sCOVID-19 admitted to the department of critical care medicine of Wuhan Third Hospital from January 1, 2020 to March 31, 2020 and 135 patients with sCAP admitted to the department of critical care medicine of Shanghai First People's Hospital from January 1, 2010 to December 31, 2017 was conducted. The basic information, diagnosis and comorbidities, laboratory data, etiology and imaging results, treatment, prognosis and outcome of the patients were collected. The differences in clinical data between sCOVID-19 and sCAP patients were compared, and the risk factors of death were analyzed. RESULTS: The 28-day mortality of sCOVID-19 and sCAP patients were 50.9% (59/116) and 37.0% (50/135), respectively. The proportion of arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) ≤ 250 mmHg (1 mmHg ≈ 0.133 kPa) in sCOVID-19 patients was significantly higher than that of sCAP [62.1% (72/116) vs. 34.8% (47/135), P < 0.01]. The possible reason was that the proportion of multiple lung lobe infiltration in sCOVID-19 was significantly higher than that caused by sCAP [94.0% (109/116) vs. 40.0% (54/135), P < 0.01], but the proportion of sCOVID-19 patients requiring mechanical ventilation was significantly lower than that of sCAP [45.7% (53/116) vs. 60.0% (81/135), P < 0.05]. Further analysis of clinical indicators related to patient death found that for sCOVID-19 patients PaO2/FiO2, white blood cell count (WBC), neutrophils (NEU), neutrophil percentage (NEU%), neutrophil/lymphocyte ratio (NLR), total bilirubin (TBil), blood urea nitrogen (BUN), albumin (ALB), Ca2+, prothrombin time (PT), D-dimer, C-reactive protein (CRP) and other indicators were significantly different between the death group and the survival group, in addition, the proportion of receiving mechanical ventilation, gamma globulin, steroid hormones and fluid resuscitation in death group were higher than survival group. Logistic regression analysis showed that the need for mechanical ventilation, NLR > 10, TBil > 10 µmol/L, lactate dehydrogenase (LDH) > 250 U/L were risk factors for death at 28 days. For sCAP patients, there were significant differences in age, BUN, ALB, blood glucose (GLU), Ca2+ and D-dimer between the death group and the survival group, but there was no significant difference in treatment. Logistic regression analysis showed that BUN > 7.14 mmol/L and ALB < 30 g/L were risk factors for 28-day death of sCAP patients. CONCLUSIONS: The sCOVID-19 patients in this cohort have worse oxygen condition and symptoms than sCAP patients, which may be due to the high proportion of lesions involving the lungs. The indicators of the difference between the death group and the survival group were similar in sCOVID-19 and sCAP patients. It is suggested that the two diseases have similar effects on renal function, nutritional status and coagulation function. But there were still differences in risk factors affecting survival. It may be that sCOVID-19 has a greater impact on lung oxygenation function, inflammatory cascade response, and liver function, while sCAP has a greater impact on renal function and nutritional status.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , China , Community-Acquired Infections/diagnosis , Humans , Oxygen , Prognosis , Retrospective Studies
5.
BMC Infect Dis ; 21(1): 955, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525962

ABSTRACT

BACKGROUND: Our goal is to further elucidate the clinical condition and prognosis of patients with severe acute COVID-19 with EBV reactivation. METHOD: This is a retrospective single-center study of COVID-19 patients admitted to the intensive care unit of Wuhan No. 3 Hospital (January 31 to March 27, 2020). According to whether Epstein-Barr virus reactivation was detected, the patients were divided into an EBV group and a Non-EBV group. Baseline data were collected including epidemiological, larithmics, clinical and imaging characteristics, and laboratory examination data. RESULTS: Of the 128 patients with COVID-19, 17 (13.3%) were infected with Epstein-Barr virus reactivation. In the symptoms,the rate of tachypnoea in the EBV group was apparently higher than that in the Non-EBV group. In lab tests, the lymphocyte and albumin of EBV group decreased more significantly than Non-EBV group, and the D-dimer and serum calcium of EBV group was higher than Non-EBV group. Regarding the infection index, CRP of EBV group was apparently above the Non-EBV group, and no significant difference was found in procalcitonin of the two groups. The incidence of respiratory failure, ARDS, and hypoproteinaemia of EBV group had more incidence than Non-EBV group. The 28-day and 14-day mortality rates of EBV group was significantly higher than that of Non-EBV group. CONCLUSIONS: In the COVID-19 patients, patients with EBV reactivation had higher 28-day and 14-day mortality rates and received more immuno-supportive treatment than patients of Non-EBV group.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Critical Illness , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Humans , Retrospective Studies , SARS-CoV-2 , Virus Activation
6.
Chemosphere ; 270: 128652, 2021 May.
Article in English | MEDLINE | ID: mdl-33268094

ABSTRACT

In this work, kaolin/steel slag particle electrodes (KSPEs) were synthesized using a calcination method, and they were used to degrade norfloxacin (NOR) wastewater in three-dimensional (3D) reactor. Characterization methods used by KSPEs included SEM, XRF, XRD and BET. The effects of cell voltage, initial pH, KSPEs dosage and initial NOR concentration on NOR degradation were studied in the optimization experiment of operating parameters. The NOR degradation rate and COD removal rate can reach 96.02% and 93.45% under the optimal parameters within 30 min, and energy consumption is 0.99 kWh m-3. As a result, KSPEs shows excellent catalytic performance and cycling, and still has high electrocatalytic activity after 10 cycles. Finally, the degradation mechanism and degradation pathways of KSPEs to treat NOR are proposed.


Subject(s)
Kaolin , Wastewater , Electrodes , Norfloxacin , Steel
7.
RSC Adv ; 10(41): 24712-24720, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-35516220

ABSTRACT

An exciting electrochemical oxidation (EO) process has been developed. Compared with electro-Fenton (EF) and electro-coagulation (EC) processes, this process had more advantages in the degradation of methylene blue. It is observed that methylene blue can be quickly degraded by EO, in which an iron rod is used as an anode, graphite is used as a cathode, and fly ash-red mud particles are used as particle electrodes. Compared to EC and EF processes that are affected by specific pH values, EO has excellent performance in the pH range of 3.0-11.0. In addition, the electric energy consumption (EEC) of EF, EC and EO is 81.51, 36.55 and 21.35 kW h m-3 respectively, suggesting EO is more economical. The free radical scavenging mechanism of i-PrOH is studied, and the contribution of EC, EF and fly ash-red mud particle electrodes in EO is inferred. Particle electrodes before and after use are characterized by SEM, EDS and BET to illustrate the role of particle electrodes in the EO system. Analysis of flocs and solutions by FTIR and GC-MS proves that EO can effectively degrade methylene blue, and the degradation route of methylene blue is speculated. The particle electrode dissolution experiment shows that the prepared fly ash-red mud particle electrode is considered to be suitable and safe for wastewater treatment. Finally, in actual surface water experiments, the EO process still has great potential.

9.
Mol Cancer ; 14: 170, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26376879

ABSTRACT

BACKGROUND: Downregulation of Aldolase B (ALDOB) has been reported in hepatocellular carcinoma. However, its clinical significance and its role in pathogenesis of HCC remain largely unknown. METHODS: We analyzed the expression of ALDOB and its clinical features in a large cohort of 313 HCC patients using tissue microarray and immunohistochemistry. Moreover, the function of stably overexpressed ALDOB in HCC cells was explored in vitro and in vivo. Gene expression microarray analysis was performed on ALDOB-overexpressing SMMC7721 cells to elucidate its mechanism of action. RESULTS: ALDOB downregulation in HCC was significantly correlated with aggressive characteristics including absence of encapsulation, increased tumor size (>5 cm) and early recurrence. ALDOB downregulation was indicative of a shorter recurrence-free survival (RFS) and overall survival (OS) for all HCC patients and early-stage HCC patients (BCLC 0-A and TNM I stage patients). Multiple analyses revealed that ALDOB downregulation was an independent risk factor of RFS and OS. Stable expression of ALDOB in HCC cell lines reduced cell migration in vitro and inhibited lung metastasis, intrahepatic metastasis, and reduced circulating tumor cells in vivo. Mechanistically, we found that cells stably expressing ALDOB show elevated Ten-Eleven Translocation 1 (TET1) expression. Moreover, ALDOB expressing cells have higher levels of methylglyoxal than do control cells, which can upregulate TET1 expression. CONCLUSION: The downregulation of ALDOB could indicate a poor prognosis for HCC patients, and therefore, ALDOB might be considered a prognostic biomarker for HCC, especially at the early stage. In addition, ALDOB inhibits the invasive features of cell lines partly through TET1 expression.


Subject(s)
Biomarkers, Tumor/biosynthesis , Carcinoma, Hepatocellular/genetics , DNA-Binding Proteins/biosynthesis , Fructose-Bisphosphate Aldolase/biosynthesis , Liver Neoplasms/genetics , Proto-Oncogene Proteins/biosynthesis , Aged , Animals , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Cell Movement/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Disease-Free Survival , Female , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Mixed Function Oxygenases , Neoplasm Metastasis , Prognosis , Proto-Oncogene Proteins/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...