Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Huan Jing Ke Xue ; 42(3): 1496-1502, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742947

ABSTRACT

Ephedrine (EPH) is an alkaloid commonly used to relieve nasal congestion caused by colds, allergic rhinitis, rhinitis, and sinusitis, and to control bronchial asthma. It is also be used as a raw material in the manufacture of methamphetamine. Although the distribution of EPH in surface waters has been widely studied, its uptake, internal distribution, and toxicokinetic processing in exposed organisms have not been well investigated. In this study, we investigated the uptake, disposition, and toxicokinetics of EPH in zebrafish (Danio rerio) in a semi-static exposure system. EPH was consistently detected in zebrafish biological samples, with the highest concentrations of 84.97 ng·g-1 detected in the brain tissue of fish in the high treatment group. Over the 14-d exposure period, the relative abundance of mean concentrations of EPH in biological samples generally followed the order of brain > ovary > liver > intestine > muscle. The uptake rate constants (Ku), elimination rate constants (Ke), and half-lives of EPH in the biological tissues were in the ranges 0.23-570.31 L·(kg·d)-1, 1.22-6.11 d-1, and 0.12-0.57 d, respectively. The observed bioconcentration factor (BCFo) and kinetically-derived bioconcentration factor (BCFk) were similar, ranging 0.24-337.33 L·kg-1 and 0.13-316.43 L·kg-1, respectively. These results are helpful for understanding the behavior of psychoactive substances in aquatic organisms and have directive significance for studying their toxicity and ecological risks to aquatic organisms.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Aquatic Organisms , Ephedrine/toxicity , Female , Toxicokinetics , Water Pollutants, Chemical/toxicity
2.
J Contam Hydrol ; 218: 70-83, 2018 11.
Article in English | MEDLINE | ID: mdl-30361115

ABSTRACT

Comparative analysis was performed of changing groundwater quality over ten years (2006-2016) by source apportionment and spatial distribution characteristics. This shallow groundwater in a typical riverside groundwater resource area was studied using principal component analysis (PCA) and factor analysis (FA), coupled with the absolute principal-component-score multiple-linear-regression (APCS-MLR) receptor model. The relationship among land-use types, hydro-chemical composition, and evolution of the quality of groundwater from natural and anthropogenic sources was demonstrated. The results showed that water-rock interaction, agricultural fertilizer, and domestic and industrial wastewater were responsible for the evolution of contamination in the groundwater. The major potential pollution sources that had significant effect on groundwater quality variables were categorized into three groups: heavy metals (iron, manganese), nutrients (ammonia nitrogen, nitrite and nitrates), and organic pollution (chemical oxygen demand). The APCS-MLR model considered the average contribution of each different potential pollution source to these categories separately. The potential pollution sources in the groundwater presented an obvious spatial distribution with an area of high concentration distributed mainly in the western and northwestern areas downstream from the Songhua River. The variation of land use type and evolution of the spatial distribution of the pollution sources in the groundwater showed good consistency. Eventually, PCA /FA coupled with APCS-MLR became a versatile tool for comprehensive source apportionment of groundwater.


Subject(s)
Environmental Monitoring , Groundwater , Agriculture , China , Environmental Monitoring/methods , Environmental Pollution/analysis , Factor Analysis, Statistical , Linear Models , Metals, Heavy/analysis , Multivariate Analysis , Principal Component Analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis
3.
Huan Jing Ke Xue ; 39(9): 4086-4095, 2018 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-30188049

ABSTRACT

Riverbank filtration is internationally accepted as a safe new method for extracting drinking water. This paper describes the structure and characteristics of pollution sources in the Hulan water source area of Harbin during wet and dry seasons, based on groundwater pollution sources apportionment technology. Pollution risk of the water source area was also assessed using the pollution sources-pathway-receptor model. Impacts on water quality safety under the collective effects of seasonal changes and human activities were then analyzed. Results showed that groundwater pollution sources have different spatial distribution characteristics based on pollution source apportionment during wet and dry seasons, with four principal influencing factors:①water-rock interaction caused by exploitation of water sources, ② natural geological processes resulting from dissolution of iron manganese minerals, and pollution by ③ nitrogen and ④ organics in response to human activities. Pollution risk assessment showed that water sources were at low risk during both wet and dry seasons. However, the south area of the water source area showed high groundwater pollution risk during the wet season, while other high-risk areas were mainly distributed around the riverbanks and densely populated areas during the dry season. These findings indicate that human activities greatly influence groundwater pollution risk during the dry season; accordingly, this season should be the focus of integrated water quality management and control for the water source area.

4.
Sci Total Environ ; 444: 401-8, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23280298

ABSTRACT

Considering the advantages and limitations of a single receptor model, in this study, a combined technique of nonnegative matrix factorization analysis with effective weighted variance solution (NMF-EWV) was proposed for source apportionment. Utilizing NMF, major linear independent factor loadings with nonnegative elements were extracted to identify potential pollution sources. Then, these physical reasonable factor loadings were regarded as source profiles to apportion contributions using effective weighted variance solutions. Evaluation results indicated that the NMF-EWV method reproduced the source profiles well, and got a reasonable apportionment results for the synthetic dataset. The methodology of the NMF-EWV was also applied to recognize sources and apportion the contributions of polycyclic aromatic hydrocarbons (PAHs) collected from freshwater and marine sediments in the Pearl River Delta (PRD) region which is one of the most industrialized and economically significant regions of China. Apportionment results showed that traffic tunnel made the largest contribution (46.49%) for the freshwater PAH sediments in the PRD, followed by coal residential source (29.61%), power plant (13.45%) and gasoline engine (10.45%). For the marine sediments, traffic tunnel was also apportioned as the largest source (57.61%), followed by power plant (22.86%), gasoline engine (17.71%) and coal residential source (1.82%). Traffic-related sources were the predominant reasons for PAH pollution in that region.

5.
Ecotoxicol Environ Saf ; 88: 148-54, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23206993

ABSTRACT

To minimize the selection uncertainties of source profiles and obtain the higher model performance, an extended fit measurement mode for chemical mass balance model (EFMM-CMB) was proposed and applied to estimate source contributions for sediment PAHs from the Daliao River around which is the important industrial bases with oil, chemical and steel factories in the northeast part of China. Based on least squares fitting method, EFMM-CMB initially calculated the fit measurement index to every one of the possible combinations that can be made from the source profiles. Any successful applications of the fitting method were ranked according to performance measures, and then determined by maximizing an overall fitting index for a unique solution. Apportionment results from two case scenarios showed that the values of performance measures for EFMM-CMB were better to that for CMB8.2 results. With species selection of high molecular weight PAHs, power plant (45.75%), biomass burning (29.34%) and traffic tunnel (10.59%) were identified as the major sources of sediment PAHs from the Daliao River region.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Models, Theoretical , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Industry , Least-Squares Analysis , Molecular Weight
6.
Sci Total Environ ; 414: 293-300, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22115615

ABSTRACT

In this study, sources of polycyclic aromatic hydrocarbons (PAHs) found in surface sediments of the Rizhao coastal area (China) were apportioned using diagnostic ratios and factor analysis with nonnegative constraints (FA-NNC). Bivariate plots of selected diagnostic ratios showed that the sources of PAHs identified in surface sediments seemed to be mixed sources dominated by petroleum-related. Literature PAH source profiles were modified based on the first-order degradation reaction in the atmosphere and sediments, and were considered as comparison for source identification. Five significant factors were determined with the diagnostic tools including coefficient of determination, cumulative percent variance and Exner function. By visually comparing PAH patterns and from the sum of squares of differences between modeled and modified literature PAH profiles, the potential sources were apportioned with the FA-NNC. The main contribution sources of PAHs originated from diesel engine (27.22%), followed by traffic emission (25.03%), gasoline engine (18.95%), coal power plant (14.77%) and coal residential (14.03%). Energy consumption was the predominant reason for PAH pollution in that region.


Subject(s)
Environmental Monitoring/statistics & numerical data , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , China , Computer Simulation , Environmental Monitoring/methods , Factor Analysis, Statistical , Models, Chemical , Monte Carlo Method
7.
Huan Jing Ke Xue ; 32(3): 742-8, 2011 Mar.
Article in Chinese | MEDLINE | ID: mdl-21634173

ABSTRACT

To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.


Subject(s)
Aluminum Silicates/chemistry , Environmental Pollutants/analysis , Minerals/chemistry , Tritium/analysis , Adsorption , Bentonite/chemistry , Clay , Environmental Monitoring , Kaolin/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL