Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2428, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160597

ABSTRACT

Dirac fermion optics exploits the refraction of chiral fermions across optics-inspired Klein-tunneling barriers defined by high-transparency p-n junctions. We consider the corner reflector (CR) geometry introduced in optics or radars. We fabricate Dirac fermion CRs using bottom-gate-defined barriers in hBN-encapsulated graphene. By suppressing transmission upon multiple internal reflections, CRs are sensitive to minute phonon scattering rates. Here we report on doping-independent CR transmission in quantitative agreement with a simple scattering model including thermal phonon scattering. As a signature of CRs, we observe Fabry-Pérot oscillations at low temperature, consistent with single-path reflections. Finally, we demonstrate high-frequency operation which promotes CRs as fast phonon detectors. Our work establishes the relevance of Dirac fermion optics in graphene and opens a route for its implementation in topological Dirac matter.

2.
Phys Rev Lett ; 121(13): 136804, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312074

ABSTRACT

Breakdown of the quantum Hall effect (QHE) is commonly associated with an electric field approaching the inter-Landau-level (LL) Zener field, the ratio of the Landau gap and the cyclotron radius. Eluded in semiconducting heterostructures, in spite of extensive investigation, the intrinsic Zener limit is reported here using high-mobility bilayer graphene and high-frequency current noise. We show that collective excitations arising from electron-electron interactions are essential. Beyond a noiseless ballistic QHE regime a large super-Poissonian shot noise signals the breakdown via inter-LL scattering. The breakdown is ultimately limited by collective excitations in a regime where phonon and impurity scattering are quenched. The breakdown mechanism can be described by a Landau critical velocity as it bears strong similarities with the roton mechanism of superfluids. In addition, we show that breakdown is a precursor of an electric-field induced QHE-metal transition.

3.
Opt Express ; 22(25): 31458-65, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607096

ABSTRACT

We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

4.
Adv Mater ; 24(30): 4112-23, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22605561

ABSTRACT

Formation of nanocrystals with preferred orientation within the amorphous carbon matrix has attracted lots of theoretical and experimental attentions recently. Interesting properties of this films, easy fabrication methods and practical problems associated with the growth of other carbon nanomaterials such as carbon nanotubes (CNTs) and graphene gives this new class of carbon nanostructure a potential to be considered as a replacement for some applications such as thermal management at nanoscale and interconnects. In this short review paper, the fabrication techniques and associated formation mechanisms of these nanostructured films have been discussed. Besides, electrical and thermal properties of these nanostructured films have been compared with CNTs and graphene.


Subject(s)
Carbon/chemistry , Nanotechnology/methods , Electricity , Graphite/chemistry , Temperature
5.
J Phys Condens Matter ; 21(22): 225003, 2009 Jun 03.
Article in English | MEDLINE | ID: mdl-21715767

ABSTRACT

Carbon films were prepared using a filtered cathodic vacuum arc deposition system operated with a substrate bias varying linearly with time during growth. Ion energies were in the range between 95 and 620 eV. Alternating dark, high density (sp(3) rich) bands and light, low density (sp(2) rich) bands were observed using cross-sectional transmission electron microscopy, corresponding to abrupt transitions between materials with densities of approximately 3.1 and 2.6 g cm(-3). No intermediate densities were observed in the samples. The low density bands show strong preferred orientation with graphitic sheets aligned normal to the film. After annealing, the low density bands became more oriented and the thinner high density layers were converted to low density material. In molecular dynamics modelling of film growth, temperature activated structural rearrangements occurring over long timescales ([Formula: see text] ps) caused the transition from sp(3) rich to oriented sp(2) rich structure. Once this oriented growth was initiated, the sputtering yield decreased and channelling was observed. However, we conclude that sputtering and channelling events, while they occur, are not the cause of the transition to the oriented structure.

6.
Phys Rev Lett ; 100(17): 176101, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18518310

ABSTRACT

We demonstrate that when, and only when, the biaxial stress is increased above a critical value of 6+/-1 GPa during the growth of a carbon film at room temperature, tetrahedral amorphous carbon is formed. This confirms that the stress present during the formation of an amorphous carbon film determines its sp;{3} bonding fraction. In the vicinity of the critical stress, a highly oriented graphitelike material is formed which exhibits low electrical resistance and provides Ohmic contacts to silicon. Atomistic simulations reveal that the structural transitions are thermodynamically driven and not the result of dynamical effects.

SELECTION OF CITATIONS
SEARCH DETAIL