Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Med Mycol ; 62(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38366631

ABSTRACT

Complete genome sequences from two Trichophyton indotineae isolates were obtained from a 23-year-old male presenting with tinea cruris after an overseas recreational water exposure and from a 53-year-old female patient with unknown travel history. Analysis of the squalene epoxidase gene and the cyp51 gene family showed an absence of mutations, correlating with phenotypic drug susceptibility. The Single Nucleotide Polymorphisms (SNPs) distance between both isolates was 92. Within the T. indotineae cluster, SNPs ranged from 7 to 182, suggesting a high genetic relatedness with other South Asian isolates. This study suggests that the prevalence of T. indotineae is under-reported and more widespread than previously thought.


Trichophyton indotineae, is a fungus causing difficult to treat ringworm infections. Two isolates were sequenced and their relationship and to other isolates was characterized. We also studied the genes responsible for first-line antifungal treatment.


Subject(s)
Arthrodermataceae , Tinea , Male , Female , Humans , Middle Aged , Young Adult , Adult , Antifungal Agents/pharmacology , Terbinafine , Singapore , Tinea/epidemiology , Tinea/veterinary , Drug Resistance, Fungal , Microbial Sensitivity Tests/veterinary , Trichophyton
2.
Article in English | MEDLINE | ID: mdl-38156208

ABSTRACT

The COVID-19 pandemic led to an initial increase in the incidence of carbapenem-resistant Enterobacterales (CRE) from clinical cultures in South-East Asia hospitals, which was unsustained as the pandemic progressed. Conversely, there was a decrease in CRE incidence from surveillance cultures and overall combined incidence. Further studies are needed for future pandemic preparedness.

3.
Wellcome Open Res ; 8: 179, 2023.
Article in English | MEDLINE | ID: mdl-37854055

ABSTRACT

Background: Antimicrobial resistance surveillance is essential for empiric antibiotic prescribing, infection prevention and control policies and to drive novel antibiotic discovery. However, most existing surveillance systems are isolate-based without supporting patient-based clinical data, and not widely implemented especially in low- and middle-income countries (LMICs). Methods: A Clinically-Oriented Antimicrobial Resistance Surveillance Network (ACORN) II is a large-scale multicentre protocol which builds on the WHO Global Antimicrobial Resistance and Use Surveillance System to estimate syndromic and pathogen outcomes along with associated health economic costs. ACORN-healthcare associated infection (ACORN-HAI) is an extension study which focuses on healthcare-associated bloodstream infections and ventilator-associated pneumonia. Our main aim is to implement an efficient clinically-oriented antimicrobial resistance surveillance system, which can be incorporated as part of routine workflow in hospitals in LMICs. These surveillance systems include hospitalised patients of any age with clinically compatible acute community-acquired or healthcare-associated bacterial infection syndromes, and who were prescribed parenteral antibiotics. Diagnostic stewardship activities will be implemented to optimise microbiology culture specimen collection practices. Basic patient characteristics, clinician diagnosis, empiric treatment, infection severity and risk factors for HAI are recorded on enrolment and during 28-day follow-up. An R Shiny application can be used offline and online for merging clinical and microbiology data, and generating collated reports to inform local antibiotic stewardship and infection control policies. Discussion: ACORN II is a comprehensive antimicrobial resistance surveillance activity which advocates pragmatic implementation and prioritises improving local diagnostic and antibiotic prescribing practices through patient-centred data collection. These data can be rapidly communicated to local physicians and infection prevention and control teams. Relative ease of data collection promotes sustainability and maximises participation and scalability. With ACORN-HAI as an example, ACORN II has the capacity to accommodate extensions to investigate further specific questions of interest.

4.
J Antimicrob Chemother ; 78(10): 2581-2590, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37671807

ABSTRACT

OBJECTIVES: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown. We examined the efficacy and mechanism of action of a hydrophilic PIM (PIM5) against colistin- and meropenem-resistant clinical isolates. METHODS: MIC and time-kill testing was performed for drug-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. N-phenyl-1-naphthylamine and propidium iodide dyes were employed to determine membrane permeabilization. Spontaneous resistant mutants and single deletion mutants were generated to understand potential resistance mechanisms to the drug. RESULTS: PIM5 had the same effectiveness against colistin- and meropenem-resistant strains as susceptible strains of GNB. PIM5 exhibited a rapid bactericidal effect independent of bacterial growth phase and was especially effective in water. The polymer disrupts both the outer and cytoplasmic membranes. PIM5 binds and intercalates into bacterial genomic DNA upon entry of cells. GNB do not develop high resistance to PIM5. However, the susceptibility and uptake of the polymer is moderately affected by mutations in the two-component histidine kinase sensor BaeS. PIM5 has negligible cytotoxicity on human cells at bacterial-killing concentrations, comparable to the commercial antibiotics polymyxin B and colistin. CONCLUSIONS: PIM5 is a potent broad-spectrum antibiotic targeting GNB resistant to last-resort antibiotics.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Humans , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Meropenem/pharmacology , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Mammals
5.
Microb Genom ; 9(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37440287

ABSTRACT

Invasive candida infections are significant infections that may occur in vulnerable patients with high rates of mortality or morbidity. Drug-resistance rates also appear to be on the rise which further complicate treatment options and outcomes. The aims of this study were to describe the prevalence, molecular epidemiology, and genetic features of Candida bloodstream isolates in a hospital setting. The resistance mechanisms towards the two most commonly administered antifungals, fluconazole and anidulafungin, were determined. Blood culture isolates between 1 January 2018 and 30 June 2021 positive for Candida spp. were included. Susceptibility testing was performed using Etest. Whole-genome-sequencing was performed using Illumina NovaSeq with bioinformatics analysis performed. A total of 203 isolates were sequenced: 56 C. glabrata, 53 C. tropicalis, 44 C. albicans, 36 C. parapsilosis complex (consisting of C. parapsilosis, C. orthopsilosis, and C. metapsilosis), six C. krusei, five C. dubliniensis, and three C. auris. A single cluster of azole-resistant C. tropicalis, and four clusters of C. parapsilosis isolates were observed, suggesting possible transmission occurring over several years. We found 11.3%, and 52.7 % of C. tropicalis and C. parapsilosis, respectively, clustered with other isolates, suggesting exogenous sources may play a significant role of transmission, particularly for C. parapsilosis. The clusters spanned over several years suggesting the possibility of environmental reservoirs contributing to the spread. Limited clonality was seen for C. albicans. Several sequence types appeared to be dominant for C. glabrata, however the SNP differences varied widely, indicating absence of sustained transmission.


Subject(s)
Candidemia , Drug Resistance, Fungal , Humans , Tertiary Care Centers , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Candidemia/epidemiology , Candidemia/drug therapy , Candida/genetics , Genomics
6.
J Med Chem ; 66(13): 8498-8509, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37357499

ABSTRACT

Different stapling techniques have been used recently to address the subpar performance of antimicrobial peptides (AMPs) in clinical trials with ample focus on α-helical AMPs. In comparison, a systematic evaluation of such strategies on ß-hairpin AMPs is lacking. Herein, we report the design, synthesis, and evaluation of a library of all-hydrocarbon-stapled ß-hairpin AMPs with variation in key parameters intended as potent therapeutics against drug-resistant pathogens. We observed an interesting interplay between the activity, stability, and structural strength. Single-stapled peptides with a 6-carbon staple at peptide termini such as 5(c6) displayed the most potent activity against colistin-resistant clinical isolates. Using imaging techniques, we observed translocation of 5(c6) across bacterial membranes without causing extensive damage. Overall, we have engineered novel all-hydrocarbon-stapled ß-hairpin AMPs with structural and functional proficiency that can effectively combat resistant pathogens, with findings from this study a point of reference for future interests in developing novel ß-hairpin AMPs.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Antimicrobial Cationic Peptides/chemistry , Gram-Negative Bacteria , Bacteria , Microbial Sensitivity Tests , Hydrocarbons/chemistry , Anti-Bacterial Agents/chemistry
7.
JAC Antimicrob Resist ; 5(3): dlad052, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37168836

ABSTRACT

Background: Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) that causes chronic pulmonary infections. Because of its extensive innate resistance to numerous antibiotics, treatment options are limited, often resulting in poor clinical outcomes. Current treatment regimens usually involve a combination of antibiotics, with clarithromycin being the cornerstone of NTM treatments. Objectives: To identify drug candidates that exhibit synergistic activity with clarithromycin against M. abscessus. Methods: We performed cell-based phenotypic screening of a compound library against M. abscessus induced to become resistant to clarithromycin. Furthermore, we evaluated the toxicity and efficacy of the top compound in a zebrafish embryo infection model. Results: The screen revealed rifaximin as a clarithromycin potentiator. The combination of rifaximin and clarithromycin was synergistic and bactericidal in vitro and potent in the zebrafish model. Conclusions: The data indicate that the rifaximin/clarithromycin combination is promising to effectively treat pulmonary NTM infections.

9.
Microbiol Resour Announc ; 11(12): e0084322, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36377892

ABSTRACT

Kodamaea ohmeri is a rarely occurring yeast that can cause human infections. We describe the whole-genome sequence of a K. ohmeri clinical blood isolate.

11.
Emerg Infect Dis ; 28(8): 1578-1588, 2022 08.
Article in English | MEDLINE | ID: mdl-35876475

ABSTRACT

Dissemination of carbapenemase-encoding plasmids by horizontal gene transfer in multidrug-resistant bacteria is the major driver of rising carbapenem-resistance, but the conjugative mechanics and evolution of clinically relevant plasmids are not yet clear. We performed whole-genome sequencing on 1,215 clinical Enterobacterales isolates collected in Singapore during 2010-2015. We identified 1,126 carbapenemase-encoding plasmids and discovered pKPC2 is becoming the dominant plasmid in Singapore, overtaking an earlier dominant plasmid, pNDM1. pKPC2 frequently conjugates with many Enterobacterales species, including hypervirulent Klebsiella pneumoniae, and maintains stability in vitro without selection pressure and minimal adaptive sequence changes. Furthermore, capsule and decreasing taxonomic relatedness between donor and recipient pairs are greater conjugation barriers for pNDM1 than pKPC2. The low fitness costs pKPC2 exerts in Enterobacterales species indicate previously undetected carriage selection in other ecological settings. The ease of conjugation and stability of pKPC2 in hypervirulent K. pneumoniae could fuel spread into the community.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents , Bacterial Proteins/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Plasmids/genetics , Singapore/epidemiology , beta-Lactamases/genetics
12.
Nat Commun ; 13(1): 3052, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650193

ABSTRACT

Carbapenemase-producing Enterobacterales (CPE) infection control practices are based on the paradigm that detected carriers in the hospital transmit to other patients who stay in the same ward. The role of plasmid-mediated transmission at population level remains largely unknown. In this retrospective cohort study over 4.7 years involving all multi-disciplinary public hospitals in Singapore, we analysed 779 patients who acquired CPE (1215 CPE isolates) detected by clinical or surveillance cultures. 42.0% met putative clonal transmission criteria, 44.8% met putative plasmid-mediated transmission criteria and 13.2% were unlinked. Only putative clonal transmissions associated with direct ward contact decreased in the second half of the study. Both putative clonal and plasmid-mediated transmission associated with indirect (no temporal overlap in patients' admission period) ward and hospital contact did not decrease during the study period. Indirect ward and hospital contact were identified as independent risk factors associated with clonal transmission. In conclusion, undetected CPE reservoirs continue to evade hospital infection prevention measures. New measures are needed to address plasmid-mediated transmission, which accounted for 50% of CPE dissemination.


Subject(s)
Enterobacteriaceae Infections , Gammaproteobacteria , Bacterial Proteins , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Gammaproteobacteria/genetics , Humans , Retrospective Studies , Whole Genome Sequencing , beta-Lactamases/genetics
13.
Microorganisms ; 10(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35630327

ABSTRACT

Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the causal agent for a variety of conditions such as meningitis, pneumonia, necrotizing fasciitis, endophthalmitis, and sepsis and is emerging as a global threat including in Southeast Asia. Elizabethkingia infections tend to be associated with high mortality rates (18.2-41%) and are mostly observed in neonates and immunocompromised patients. Difficulties in precisely identifying Elizabethkingia at the species level by traditional methods have hampered our understanding of this genus in human infections. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica, whereas in Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with hospital settings. Misidentification of Elizabethkingia spp. could, however, underestimate the number of cases attributed to the bacterium, as precise identification requires tools such as MALDI-TOF MS, and particularly whole-genome sequencing, which are not available in most hospital laboratories. Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative bacterium with a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug resistance. Efforts to prevent and further understand Elizabethkingia spp. infections and limit its spread must rise to this new challenge.

16.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: mdl-34845980

ABSTRACT

Mycobacterium abscessus comprises three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. These closely related strains are typically multi-drug-resistant and can cause difficult-to-treat infections. Dominant clusters of isolates with increased pathogenic potential have been demonstrated in pulmonary infections in the global cystic fibrosis (CF) population. An investigation was performed on isolates cultured from an Asian, predominantly non-CF population to explore the phylogenomic relationships within our population and compare it to global M. abscessus isolates. Whole-genome-sequencing was performed on M. abscessus isolates between 2017 and 2019. Bioinformatic analysis was performed to determine multi-locus-sequence-type, to establish the phylogenetic relationships between isolates, and to identify virulence and resistance determinants in these isolates. A total of 210 isolates were included, of which 68.5 % (144/210) were respiratory samples. These isolates consisted of 140 (66.6 %) M. abscessus subsp. massiliense, 67 (31.9 %) M. abscessus subsp. abscessus, and three (1.4 %) M. abscessus subsp. bolletii. Dominant sequence-types in our population were similar to those of global CF isolates, but SNP differences in our population were comparatively wider despite the isolates being from the same geographical region. ESX (ESAT-6 secretory) cluster three appeared to occur most commonly in ST4 and ST6 M. abscessus subsp. massiliense, but other virulence factors did not demonstrate an association with isolate subspecies or sample source. We demonstrate that although similar predominant sequence-types are seen in our patient population, cross-transmission is absent. The risk of patient-to-patient transmission appears to be largely limited to the vulnerable CF population, indicating infection from environmental sources remains more common than human-to-human transmission. Resistance and virulence factors are largely consistent across the subspecies with the exception of clarithromycin susceptibility and ESX-3.


Subject(s)
Cystic Fibrosis , Mycobacterium abscessus , Clarithromycin , Humans , Molecular Epidemiology , Mycobacterium abscessus/genetics , Phylogeny
17.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34698625

ABSTRACT

Staphylococcus argenteus and Staphylococcus schweitzeri are the newest members of the Staphylococcus aureus complex. The number of clinical reports attributed to these new S. aureus complex members is limited. In a retrospective clinical laboratory study conducted over a 4-month period investigating the prevalence of S. argenteus and S. schweitzeri, a total of 43 isolates were selected. Phylogeny based on core-gene multilocus sequence typing (MLST) analysis confirmed that 37 were S. argenteus but a genetically distinct clade of six isolates was identified. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses further supported the classification of these six isolates as a separate species. When compared to S. aureus complex reference genomes, the ANI values were ≤94 % and the dDDH values were <53 %. Based on the seven-gene S. aureus MLST scheme, the six isolates belong to five novel allelic profiles (ST6105, ST6106, ST6107, ST6108 and ST109). Their clinical infection features were similar to S. aureus. Skin and soft tissue infections presented in four out of the six cases. Routine clinical diagnostic identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and biochemical profiling does not differentiate these new members from the rest of the complex. Genotypic analysis suggests that the six isolates belong to a novel species, Staphylococcus singaporensis sp. nov. with isolate SS21T (=DSM 111408T=NCTC14419T) designated as the type strain.


Subject(s)
Phylogeny , Staphylococcus/classification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Humans , Multilocus Sequence Typing , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Sequence Analysis, DNA , Staphylococcus/isolation & purification , Staphylococcus aureus/genetics
18.
Acta Biomater ; 135: 214-224, 2021 11.
Article in English | MEDLINE | ID: mdl-34506975

ABSTRACT

Synthetic ß-hairpin antimicrobial peptides (AMPs) offer a useful source for the development of novel antimicrobial agents. ß-hairpin peptides generally consist of two side strands bridged by a reverse turn. In literature, most studies focused on the modifications of the side strands to manipulate the stability and activity of ß-hairpin peptides, and much less is known about the impact of the turn region. By designing a series of de novo ß-hairpin peptides with identical side strands but varied turns, we demonstrated that mutations of only 2 to 4 amino acids at the turn region could impart a wide range of antimicrobial profiles among synthetic ß-hairpin AMPs. BTT2-4 and BTT6 displayed selective potency against Gram-negative bacteria, with minimum inhibitory concentrations (MICs) of 4-8 µM. In contrast, BTT1 exhibited broad-spectrum activity, with MICs of 4-8 µM against both Gram-positive and Gram-negative strains. Additionally, BTT1 was potent against methicillin-resistant Staphylococcus aureus (MRSA) and colistin-resistant Enterobacterales. The antimicrobial potency of BTT1 persisted after 14 days of serial passage. Mechanistic studies revealed that interactions between lipopolysaccharide (LPS) and the peptides were critical to their membranolytic activity against the bacterial inner membrane. Aside from folding stability, we observed that a degree of conformational flexibility was required for disruptive membrane interactions. STATEMENT OF SIGNIFICANCE: By examining the significance of the turn region of ß-hairpin peptides, we present valuable knowledge to the design toolkit of novel antimicrobial peptides as alternative therapeutics to overcome antibiotic resistance. Our de novo designed synthetic peptides displayed selective activity against Gram-negative bacteria and potent activity against clinically relevant antibiotic-resistant strains (e.g. colistin-resistant Enterobacterales and methicillin-resistant Staphylococcus aureus). The bactericidal activity of our peptides was shown to be robust in the presence of proteolytic trypsin and saline, conditions that could suppress peptide activity. Our peptides were also determined to be non-cytotoxic against a human cell line.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteria , Gram-Negative Bacteria , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...