Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Diagn Invest ; : 10406387241251834, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716711

ABSTRACT

Toxoplasma gondii infections are common in a range of mammalian and avian species, but clinical disease has been reported only rarely in domestic rabbits. Two cases of toxoplasmosis in domestic rabbits from the same premises were submitted to a diagnostic pathology facility in Athens, GA, USA. Both rabbits died after exhibiting clinical signs of gastrointestinal stasis. The gross findings observed in both rabbits comprised miliary, random, white-to-tan, necrotic foci throughout the spleen, liver, and lungs. Histologically, tachyzoites were observed within necrotizing inflammatory foci in the spleens of both rabbits, and in various other organs (tracheobronchial lymph node, lung, heart, and cecal appendix) of one rabbit. In both cases, the tachyzoites were immunoreactive with anti-Toxoplasma gondii antibodies. In addition, T. gondii DNA was detected via PCR and sequencing from a fresh lung sample from one rabbit and formalin-fixed, paraffin-embedded spleen, liver, femoral bone marrow, and haired skin from the second rabbit. Given that T. gondii can cause disease in domestic rabbits and is also a concern for other potential intermediate hosts (e.g., humans, other domestic animals), this parasite warrants consideration in the diagnostic evaluation of lagomorph tissues with compatible lesions.

2.
Transbound Emerg Dis ; 69(2): 286-296, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33406320

ABSTRACT

Hepatitis E is a significant liver disease caused by infection with hepatitis E virus (HEV). The risk factors for hepatitis E in developed countries include blood transfusion and ingestion of undercooked meat or meat products derived from HEV-infected animals. Since 2000, there has been increased human hepatitis E incidence reported in Singapore. Although the causes of this increase have not been established, several studies have linked zoonotic HEV infections in humans to pork consumption. It is therefore important to closely monitor the presence of HEV in food sources for the prevalence and virulence. In this study, we demonstrated the presence of HEV in pigs imported into Singapore for consumption through serological and molecular investigation of live pig and post-slaughter samples collected between 2000 and 2019. Among imported pigs, anti-HEV antibody prevalence remained at a level around 35% until 2017, with a statistically significant increase in 2018. HEV RNA was detected in 8.40% (34/405) of the faecal samples, indicative of an active infection in the pigs. HEV RNA was also detected in 6.67% (4/60) of liver samples obtained post-slaughter. We also report the development of an RT-PCR-based next-generation sequencing (NGS) method that enabled full sequencing of the HEV genome in HEV RNA-positive samples in a relatively short span of time. Phylogenetic analysis identified the HEV in one of the imported pigs (HEV-S28) as genotype 3a, which clustered together with the human HEV strains previously identified in Singapore. We found that the HEV-S28 strain exhibited amino acid substitutions that are associated with reduced HEV replication efficiency. The increase in anti-HEV seroprevalence in the pig population from 2018 is worth further exploration. We will continue to monitor the prevalent HEV strains and assess the genetic diversity of HEV in the imported pigs to confirm the potential association with human infections.


Subject(s)
Hepatitis E virus , Hepatitis E , Swine Diseases , Animals , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis E virus/genetics , Phylogeny , Prevalence , RNA, Viral/genetics , Seroepidemiologic Studies , Singapore/epidemiology , Swine , Swine Diseases/epidemiology
3.
Transbound Emerg Dis ; 69(3): 1521-1528, 2022 May.
Article in English | MEDLINE | ID: mdl-33892517

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a significant viral disease caused by infection with Rabbit haemorrhagic disease virus (RHDV). The first documented cases of RHDV in Singapore occurred in adult pet European rabbits (Oryctolagus cuniculus) in September 2020. Rabbits presented with acute hyporexia, lethargy, huddled posture, and varying degrees of pyrexia and tachypnoea. Clinical pathology consistently reflected markedly elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALKP). Hepatic lobe torsion was ruled out using ultrasonography and colour Doppler studies in all patients. A total of 11 rabbits owned by 3 families were presented to the clinics; 8/11 rabbits died within 48 hr of presentation, while the remaining two rabbits had recovered after prolonged hospitalization and one rabbit was aclinical. Histopathology revealed acute, marked diffuse hepatocellular necrosis and degeneration, findings which were suggestive for RHDV infection and prompted the undertaking of further molecular diagnostics. Subsequent polymerase chain reaction of the liver samples detected RHDV RNA. Molecular characterization of viral genomes by whole genome sequencing revealed that the outbreak strain was of the genotype GI.2 (RHDV2/RHDVb). Nucleotide sequences of the VP60 gene were compared with various RHDV variants using phylogenetic analysis. The sample genome shared highest sequence identity with a GI.2-genotyped virus from GenBank (RHDV isolate Algarve 1 polyprotein and minor structural protein (VP10) genes, GenBank accession KF442961). The combination of clinical, histopathological, molecular and sequencing technologies enabled rapid detection and detailed genetic characterization of the RHDV virus causing the present outbreak for prompt implementation of disease control measures in Singapore. Further epidemiological investigations of potential virus introduction into Singapore are ongoing.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Disease Outbreaks/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Humans , Phylogeny , Rabbits , Singapore
4.
Virol J ; 16(1): 71, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138237

ABSTRACT

BACKGROUND: Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. METHODS: In order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2'-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses. RESULTS: The LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days' post-infection. The propagated virus, when injected intra-peritoneally into naïve Asian seabass under experimental conditions, induced lesions similar to fish naturally infected with LCBV. Morphology of LCBV, visualized under TEM, revealed icosahedral particles around 50 nm in diameter. Chloroform and BUDR sensitivity assays confirmed the virus to be a non-enveloped RNA virus. Further genome analysis using NGS identified the virus to be a birnavirus with two genome segments. Phylogenetic analyses revealed that LCBV is more closely related to the Blosnavirus genus than to the Aquabirnavirus genus within the Birnaviridae family. CONCLUSIONS: These findings revealed the presence of a novel birnavirus that could be linked to the disease observed in the Asian seabass from the coastal fish farms in Singapore. This calls for more studies on disease transmission and enhanced surveillance programs to be carried out to understand pathogenicity and epidemiology of this novel virus. The gene sequences data obtained from the study can also pave way to the development of PCR-based diagnostic test methods that will enable quick and specific identification of the virus in future disease investigations.


Subject(s)
Bass/virology , Fish Diseases/virology , Genome, Viral , Infectious bursal disease virus/classification , Infectious bursal disease virus/isolation & purification , Animals , Aquaculture , Cell Line , High-Throughput Nucleotide Sequencing , Infectious bursal disease virus/ultrastructure , Microscopy, Electron, Transmission , Phylogeny , Polymerase Chain Reaction , Singapore
SELECTION OF CITATIONS
SEARCH DETAIL
...