Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 120(3): 249-261, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38048392

ABSTRACT

AIMS: Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS: To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS: Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.


Subject(s)
Atrial Fibrillation , Humans , Heart Atria , Ion Channels , Tachycardia/pathology , Fibrosis
2.
Sci Transl Med ; 13(603)2021 07 21.
Article in English | MEDLINE | ID: mdl-34290054

ABSTRACT

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.


Subject(s)
Desmosomes , Induced Pluripotent Stem Cells , Humans , Myocardial Contraction , Myocytes, Cardiac , Phenotype , Tissue Engineering
3.
Phys Rev X ; 8(2): 021077, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-30210937

ABSTRACT

The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are the first to address the question of how geometry of the abnormal region affects the onset of ectopy using a combination of experimental, in silico, and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher stimulus is expected to produce excitation more easily. Our in silico studies reveal that the nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is confirmed using the Schrödinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the conditions that can trigger cardiac arrhythmias.

4.
Elife ; 72018 09 27.
Article in English | MEDLINE | ID: mdl-30260316

ABSTRACT

Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system.


Subject(s)
Heart Atria , Myocytes, Cardiac/physiology , Optogenetics/methods , Animals , Atrial Function/physiology , Computer Simulation , Humans , Rats , Systems Biology
5.
Cardiovasc Res ; 113(3): 354-366, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28395022

ABSTRACT

Aims: Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Methods and results: Transverse, 150-µm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Conclusions: Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a novel perspective for cardiac arrhythmia management.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Calcium Channels/radiation effects , Light , Myocytes, Cardiac/radiation effects , Optogenetics , Rhodopsin/radiation effects , Action Potentials , Animals , Animals, Newborn , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Calcium Channels/biosynthesis , Calcium Channels/genetics , Computer Simulation , Genetic Vectors , Lentivirus/genetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Rats, Wistar , Rhodopsin/biosynthesis , Rhodopsin/genetics , Time Factors , Tissue Culture Techniques , Transfection , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...