Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(6): 3017-3024, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315649

ABSTRACT

Dehydrosqualene synthase (CrtM), as a squalene synthase-like enzyme from Staphylococcus aureus, can naturally utilize farnesyl diphosphate to produce dehydrosqualene (C30H48). However, no study has documented the natural production of squalene (C30H50) by CrtM. Here, based on an HPLC-Q-Orbitrap-MS/MS study, we report that the expression of crtM in vitro or in Bacillus subtilis 168 both results in the output of squalene, dehydrosqualene, and phytoene (C40H64). Notably, wild-type CrtM exhibits a significantly higher squalene yield compared to squalene synthase (SQS) from Bacillus megaterium with an approximately 2.4-fold increase. Moreover, the examination of presqualene diphosphate's stereostructures in both CrtM and SQS enzymes provides further understanding into the presence of multiple identified terpenoids. In summary, this study not only provides insights into the promiscuity demonstrated by squalene synthase-like enzymes but also highlights a new strategy of utilizing CrtM as a potential replacement for SQS in cell factories, thereby enhancing squalene production.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Squalene , Squalene/analogs & derivatives , Squalene/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Tandem Mass Spectrometry , Terpenes/metabolism , Nitric Oxide Synthase
2.
Chemistry ; 29(31): e202300697, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36893219

ABSTRACT

Multi-enzymatic cascades exploiting engineered enzymes are a powerful tool for the tailor-made synthesis of complex molecules from simple inexpensive building blocks. In this work, we engineered the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) into an effective aldolase with 160-fold increased activity compared to 4-OT wild type. Subsequently, we applied the evolved 4-OT variant to perform an aldol condensation, followed by an epoxidation reaction catalyzed by a previously engineered 4-OT mutant, in a one-pot two-step cascade for the synthesis of enantioenriched epoxides (up to 98 % ee) from biomass-derived starting materials. For three chosen substrates, the reaction was performed at milligram scale with product yields up to 68 % and remarkably high enantioselectivity. Furthermore, we developed a three-step enzymatic cascade involving an epoxide hydrolase for the production of chiral aromatic 1,2,3-prim,sec,sec-triols with high enantiopurity and good isolated yields. The reported one-pot, three-step cascade, with no intermediate isolation and being completely cofactor-less, provides an attractive route for the synthesis of chiral aromatic triols from biomass-based synthons.


Subject(s)
Aldehyde-Lyases , Epoxy Compounds , Epoxy Compounds/chemistry , Biomass , Biocatalysis , Aldehyde-Lyases/chemistry , Fructose-Bisphosphate Aldolase/chemistry
3.
Org Biomol Chem ; 19(29): 6407-6411, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34235532

ABSTRACT

N-Substituted l-aspartic acids are important chiral building blocks for pharmaceuticals and food additives. Here we report the asymmetric synthesis of various N-arylalkyl-substituted l-aspartic acids using ethylenediamine-N,N'-disuccinic acid lyase (EDDS lyase) as a biocatalyst. This C-N lyase shows a broad non-natural amine substrate scope and outstanding enantioselectivity, allowing the efficient addition of structurally diverse arylalkylamines to fumarate to afford the corresponding N-arylalkyl-substituted l-aspartic acids in good isolated yield (up to 79%) and with excellent enantiopurity (>99% ee). These results further demonstrate that C-N lyases working in reverse constitute an extremely powerful synthetic tool to prepare difficult noncanonical amino acids.


Subject(s)
Aspartic Acid
4.
J Agric Food Chem ; 69(16): 4785-4794, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33877851

ABSTRACT

Engineering strategies to improve terpenoids' production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids' production in B. subtilis by comprehensive and systematic metabolic engineering.


Subject(s)
Bacillus subtilis , Clustered Regularly Interspaced Short Palindromic Repeats , Bacillus subtilis/genetics , CRISPR-Cas Systems , Gene Editing , Metabolic Engineering , Polycyclic Sesquiterpenes
5.
Food Res Int ; 137: 109461, 2020 11.
Article in English | MEDLINE | ID: mdl-33233135

ABSTRACT

Acetaminophen (APAP) misuse or overdose is the most important cause of drug-induced acute liver failure. Overdoses of acetaminophen induce oxidative stress and liver injury by the electrophilic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Plant-based medicine has been used for centuries against diseases or intoxications due to their biological activities. The aim of this study was to evaluate the therapeutic value of Opuntia robusta and Opuntia streptacantha fruit extracts against acetaminophen-induced liver damage and to identify the major biocomponents on them. Opuntia fruit extracts were obtained by peeling and squeezing each specie, followed by lyophilization. HPLC was used to characterize the extracts. The effect of the extracts against acetaminophen-induced acute liver injury was evaluated both in vivo and in vitro using biochemical, molecular and histological determinations. The results showed that betacyanins are the main components in the analyzed Opuntia fruit extracts, with betanin as the highest concentration. Therapeutic treatments with Opuntia extracts reduced biochemical, molecular and histological markers of liver (in vivo) and hepatocyte (in vitro) injury. Opuntia extracts reduced the APAP-increased expression of the stress-related gene Gadd45b. Furthermore, Opuntia extracts exerted diverse effects on the antioxidant related genes Sod2, Gclc and Hmox1, independent of their ROS-scavenging ability. Therefore, betacyanins as betanin from Opuntia robusta and Opuntia streptacantha fruits are promising nutraceutical compounds against oxidative liver damage.


Subject(s)
Liver Failure, Acute , Opuntia , Acetaminophen , Betacyanins , Fruit , Plant Extracts/pharmacology
6.
J Ethnopharmacol ; 246: 112188, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31470085

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbopogon citratus (lemongrass) essential oil has been widely used as a traditional medicine and is well known for antimicrobial properties. Therefore, it might be a potent anti-infective and biofilm inhibitive against Candida tropicalis infections. Until now, no ideal coating or cleaning method based on an essential oil has been described to prevent biofilm formation of Candida strains on silicone rubber maxillofacial prostheses, voice prostheses and medical devices susceptible to C. tropicalis infections. AIM OF THE STUDY: To investigate the antifungal and biofilm inhibitory effects of Cymbopogon citratus oil. Clinical isolates of C. tropicalis biofilms on different biomaterials were used to study the inhibitory effect. MATERIALS AND METHODS: The efficacy of Cymbopogon citratus, Cuminum cyminum, Citrus limon and Cinnamomum verum essential oils were compared on biofilm formation of three C. tropicalis isolates on 24 well polystyrene plates. C. citratus oil coated silicone rubber surfaces were prepared using hypromellose ointment as a vehicle. The antifungal tests to determine minimum inhibitory and minimum fungicidal concentrations were assessed by a microbroth dilution method and biofilm formation was determined by a crystal violet binding assay. RESULTS: C. tropicalis strains formed more biofilm on hydrophobic materials than on hydrophilic glass. C. citratus oil showed a high antifungal effect against all C. tropicalis strains. For comparison, C. limon oil and C. cyminum oil showed minor to no killing effect against the C. tropicalis strains. C. citratus oil had the lowest minimal inhibitory concentration of all essential oils tested and inhibited biofilm formation of all C. tropicalis strains. C. citratus oil coating on silicone rubber resulted in a 45-76% reduction in biofilm formation of all C. tropicalis strains. CONCLUSION: Cymbopogon citratus oil has good potential to be used as an antifungal and antibiofilm agent on silicone rubber prostheses and medical devices on which C. tropicalis biofilms pose a serious risk for skin infections and may cause a shorter lifespan of the prosthesis.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida tropicalis/drug effects , Cymbopogon , Oils, Volatile/pharmacology , Biocompatible Materials , Candida tropicalis/physiology , Microbial Sensitivity Tests , Prostheses and Implants/microbiology , Silicone Elastomers
7.
Angew Chem Int Ed Engl ; 59(1): 429-435, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31625664

ABSTRACT

Aspartic acid derivatives with branched N-alkyl or N-arylalkyl substituents are valuable precursors to artificial dipeptide sweeteners such as neotame and advantame. The development of a biocatalyst to synthesize these compounds in a single asymmetric step is an as yet unmet challenge. Reported here is an enantioselective biocatalytic synthesis of various difficult N-substituted aspartic acids, including N-(3,3-dimethylbutyl)-l-aspartic acid and N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-l-aspartic acid, precursors to neotame and advantame, respectively, using an engineered variant of ethylenediamine-N,N'-disuccinic acid (EDDS) lyase from Chelativorans sp. BNC1. This engineered C-N lyase (mutant D290M/Y320M) displayed a remarkable 1140-fold increase in activity for the selective hydroamination of fumarate compared to that of the wild-type enzyme. These results present new opportunities to develop practical multienzymatic processes for the more sustainable and step-economic synthesis of an important class of food additives.


Subject(s)
Aspartic Acid/chemistry , Dipeptides/chemistry , Lyases/chemistry , Sweetening Agents/chemistry , Stereoisomerism
8.
ACS Catal ; 9(2): 1503-1513, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30740262

ABSTRACT

Chiral γ-aminobutyric acid (GABA) analogues represent abundantly prescribed drugs, which are broadly applied as anticonvulsants, as antidepressants, and for the treatment of neuropathic pain. Here we report a one-pot two-step biocatalytic cascade route for synthesis of the pharmaceutically relevant enantiomers of γ-nitrobutyric acids, starting from simple precursors (acetaldehyde and nitroalkenes), using a tailor-made highly enantioselective artificial "Michaelase" (4-oxalocrotonate tautomerase mutant L8Y/M45Y/F50A), an aldehyde dehydrogenase with a broad non-natural substrate scope, and a cofactor recycling system. We also report a three-step chemoenzymatic cascade route for the efficient chemical reduction of enzymatically prepared γ-nitrobutyric acids into GABA analogues in one pot, achieving high enantiopurity (e.r. up to 99:1) and high overall yields (up to 70%). This chemoenzymatic methodology offers a step-economic alternative route to important pharmaceutically active GABA analogues, and highlights the exciting opportunities available for combining chemocatalysts, natural enzymes, and designed artificial biocatalysts in multistep syntheses.

9.
Chemistry ; 24(66): 17434-17438, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30192043

ABSTRACT

Access to vitamin B5 [(R)-pantothenic acid] and both diastereoisomers of α-methyl-substituted vitamin B5 [(R)- and (S)-3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)-2-methylpropanoic acid] was achieved using a modular three-step biocatalytic cascade involving 3-methylaspartate ammonia lyase (MAL), aspartate-α-decarboxylase (ADC), ß-methylaspartate-α-decarboxylase (CrpG) or glutamate decarboxylase (GAD), and pantothenate synthetase (PS) enzymes. Starting from simple non-chiral dicarboxylic acids (either fumaric acid or mesaconic acid), vitamin B5 and both diastereoisomers of α-methyl-substituted vitamin B5 , which are valuable precursors for promising antimicrobials against Plasmodium falciparum and multidrug-resistant Staphylococcus aureus, can be generated in good yields (up to 70 %) and excellent enantiopurity (>99 % ee). This newly developed cascade process may be tailored and used for the biocatalytic production of various vitamin B5 derivatives by modifying the pantoyl or ß-alanine moiety.


Subject(s)
Ammonia-Lyases/metabolism , Glutamate Decarboxylase/metabolism , Pantothenic Acid/biosynthesis , Peptide Synthases/metabolism , Adenosine Triphosphate/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Biocatalysis , Escherichia coli/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/pharmacology , Plasmodium falciparum/drug effects , Stereoisomerism , beta-Alanine/chemistry , beta-Alanine/metabolism
10.
J Med Chem ; 61(17): 7741-7753, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30011368

ABSTRACT

Aspartate (Asp) derivatives are privileged compounds for investigating the roles governed by excitatory amino acid transporters (EAATs) in glutamatergic neurotransmission. Here, we report the synthesis of various Asp derivatives with (cyclo)alkyloxy and (hetero)aryloxy substituents at C-3. Their pharmacological properties were characterized at the EAAT1-4 subtypes. The l- threo-3-substituted Asp derivatives 13a-e and 13g-k were nonsubstrate inhibitors, exhibiting pan activity at EAAT1-4 with IC50 values ranging from 0.49 to 15 µM. Comparisons between (dl- threo)-19a-c and (dl- erythro)-19a-c Asp analogues confirmed that the threo configuration is crucial for the EAAT1-4 inhibitory activities. Analogues (3b-e) of l-TFB-TBOA (3a) were shown to be potent EAAT1-4 inhibitors, with IC50 values ranging from 5 to 530 nM. Hybridization of the nonselective EAAT inhibitor l-TBOA with EAAT2-selective inhibitor WAY-213613 or EAAT3-preferring inhibitor NBI-59159 yielded compounds 8 and 9, respectively, which were nonselective EAAT inhibitors displaying considerably lower IC50 values at EAAT1-4 (11-140 nM) than those displayed by the respective parent molecules.


Subject(s)
Ammonia-Lyases/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/pharmacology , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 3/antagonists & inhibitors , Excitatory Amino Acid Transporter 4/antagonists & inhibitors , Glutamate Plasma Membrane Transport Proteins/antagonists & inhibitors , Aspartic Acid/chemical synthesis , Excitatory Amino Acid Transporter 2 , HEK293 Cells , Humans , Molecular Structure , Structure-Activity Relationship
11.
Planta Med ; 84(8): 544-550, 2018 May.
Article in English | MEDLINE | ID: mdl-29253908

ABSTRACT

Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris. This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G2/M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods.


Subject(s)
Antineoplastic Agents/isolation & purification , Apiaceae/chemistry , Carbon Dioxide/chemistry , Podophyllotoxin/analogs & derivatives , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Chromatography, Supercritical Fluid , Drugs, Chinese Herbal , HeLa Cells , Humans , Plant Roots/chemistry , Podophyllotoxin/chemistry , Podophyllotoxin/isolation & purification , Podophyllotoxin/pharmacology
12.
Sci Rep ; 7(1): 11260, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900161

ABSTRACT

Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4'-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.


Subject(s)
Heredodegenerative Disorders, Nervous System/drug therapy , Pantetheine/analogs & derivatives , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Serum/chemistry , Animals , Cell Line , Disease Models, Animal , Drosophila , Humans , Mice , Pantetheine/administration & dosage , Pantetheine/chemical synthesis , Pantetheine/isolation & purification , Pantetheine/pharmacokinetics , Treatment Outcome
13.
Org Biomol Chem ; 15(11): 2341-2344, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28244539

ABSTRACT

The complex amino acid (l-threo)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (l-TFB-TBOA) and its derivatives are privileged compounds for studying the roles of excitatory amino acid transporters (EAATs) in regulation of glutamatergic neurotransmission, animal behavior, and in the pathogenesis of neurological diseases. The wide-spread use of l-TFB-TBOA stems from its high potency of EAAT inhibition and the lack of off-target binding to glutamate receptors. However, one of the main challenges in the evaluation of l-TFB-TBOA and its derivatives is the laborious synthesis of these compounds in stereoisomerically pure form. Here, we report an efficient and step-economic chemoenzymatic route that gives access to enantio- and diastereopure l-TFB-TBOA and its derivatives at multigram scale.


Subject(s)
Amino Acid Transport System X-AG/antagonists & inhibitors , Amino Acids/chemical synthesis , Amino Acids/metabolism , Aspartic Acid/analogs & derivatives , Enzymes/metabolism , Amino Acids/chemistry , Aspartic Acid/chemical synthesis , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Molecular Structure , Stereoisomerism
14.
European J Org Chem ; 2016(32): 5350-5354, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27917069

ABSTRACT

The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to ß-nitrostyrene derivatives to yield chiral γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acids. In this study, we investigated the effect of different substituents at the aromatic ring of the Michael acceptor on the catalytic efficiency and stereoselectivity of the 4-OT-catalyzed acetaldehyde addition reactions. Highly enantioenriched (R)- and (S)-γ-nitroaldehydes and 4-substituted chroman-2-ol could be obtained in good to excellent yields by applying different substituents at appropriate positions of the aromatic substrate. Stereochemical control of these enzymatic Michael-type additions by "substrate engineering" allowed the enantioselective synthesis of valuable γ-aminobutyric acid precursors. In addition, the results suggest a novel enzymatic synthesis route towards precursors for chromans and derivatives, which are valuable scaffolds for preparing biologically active natural products.

15.
Nat Commun ; 7: 10911, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26952338

ABSTRACT

The Michael-type addition reaction is widely used in organic synthesis for carbon-carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon-carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon-carbon bond formation is the enzyme 4-oxalocrotonate tautomerase, which exhibits promiscuous Michael-type addition activity. Here we present mutability landscapes for the expression, tautomerase and Michael-type addition activities, and enantioselectivity of 4-oxalocrotonate tautomerase. These maps of neutral, beneficial and detrimental amino acids for each residue position and enzyme property provide detailed insight into sequence-function relationships. This offers exciting opportunities for enzyme engineering, which is illustrated by the redesign of 4-oxalocrotonate tautomerase into two enantiocomplementary 'Michaelases'. These 'Michaelases' catalyse the asymmetric addition of acetaldehyde to various nitroolefins, providing access to both enantiomers of γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acid derivatives.


Subject(s)
Crotonates/chemistry , Isomerases/chemistry , Protein Engineering , Biocatalysis , Crotonates/metabolism , Isomerases/genetics , Isomerases/metabolism , Kinetics , Stereoisomerism , Substrate Specificity
16.
Springerplus ; 3: 495, 2014.
Article in English | MEDLINE | ID: mdl-26331107

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-inducing ligand (TRAIL WT) or the DR5-specific TRAIL D269H/E195R variant as a potential new strategy to eradicate GBM cells using TRAIL-resistant and -sensitive GBM cells. GBM cell lines were investigated for their sensitivity to TRAIL, DMC and combination of both agents. Cell viability was measured by MTS assay and apoptosis was assessed by Annexin V/PI and acridine orange staining. Caspase activation and protein expression levels were analysed with Western blotting. Death Receptor (DR) cell surface expression levels were quantified by flow cytometry. DR5 expression was increased in U87 cells by ectopic expression using a retroviral plasmid and survivin expression was silenced using specific siRNAs. We demonstrate that A172 expresses mainly DR5 on the cell surface and that these cells show increased sensitivity for the DR5-specific rhTRAIL D269H/E195R variant. In contrast, U87 cells show low DR cell surface levels and is insensitive via both DR4 and DR5. We determined that DMC treatment displays a dose-dependent reduction in cell viability against a number of GBM cells, associated with ER stress induction, as shown by the up-regulation of glucose-regulated protein 78 (GRP78) and CCAAT/-enhancer-binding protein homologous protein (CHOP) in A172 and U87 cells. The dramatic decrease in cell viability is not accompanied by a correspondent increase in Annexin V/PI or caspase activation typically seen in apoptotic or/and necrotic cells within 24h of treatment. Although DMC did not affect DR5 expression in the GBM cells, it increased TRAIL-induced caspase-8 activation in both TRAIL-sensitive and -resistant cells, indicating that DMC potentiates initiator caspase activation in these cells. In A172 cells, sub-toxic concentrations of DMC greatly potentiated TRAIL-induced apoptosis. Furthermore, DMC strongly reduced survivin expression in A172 and U87 cells and silencing of this anti-apoptotic protein partially sensitized cells to TRAIL-induced apoptosis. Our findings corroborate that DMC is a promising agent against GBM, and uncovers a potential synergistic cooperation with TRAIL in this highly malignant cancer.

18.
Chemistry ; 19(43): 14407-10, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24115023

ABSTRACT

Call me Michaelase: The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to a collection of aromatic and aliphatic nitroolefins with high stereoselectivity producing precursors of γ-aminobutyric acid (GABA) analogues.


Subject(s)
Acetaldehyde/metabolism , Alkenes/metabolism , Isomerases/metabolism , Nitro Compounds/chemistry , Proline/chemistry , Acetaldehyde/chemistry , Alkenes/chemistry , Biocatalysis , Carbon/chemistry , Stereoisomerism , gamma-Aminobutyric Acid/metabolism
19.
Chembiochem ; 14(2): 191-4, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23303727

ABSTRACT

Exploiting catalytic promiscuity: The proline-based enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes asymmetric Michael-type additions of linear aldehydes--ranging from acetaldehyde to octanal--to trans-ß-nitrostyrene in aqueous solvent. The presence of 1.4 mol% of 4-OT effected formation of the anticipated γ-nitroaldehydes in fair to good yields with dr values of up to 93:7 and ee values of up to 81 %.


Subject(s)
Aldehydes/metabolism , Isomerases/metabolism , Styrenes/metabolism , Aldehydes/chemistry , Catalysis , Isomerases/chemistry , Models, Molecular , Proline/chemistry , Proline/metabolism , Styrenes/chemistry
20.
Appl Environ Microbiol ; 77(17): 6094-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21764964

ABSTRACT

Escherichia coli has been widely used as an expression host for the identification of desired biocatalysts through screening or selection assays. We have previously used E. coli in growth selection and screening assays for identification of Bacillus subtilis lipase variants (located in the periplasm) with improved activity and enantioselectivity toward 1,2-O-isopropylideneglycerol (IPG) esters. In the course of these studies, we discovered that E. coli itself exhibits significant cytoplasmic esterase activity toward IPG esters. In order to identify the enzyme (or enzymes) responsible for this esterase activity, we analyzed eight E. coli knockout strains, in which single esterase genes were deleted, for their ability to hydrolyze IPG butyrate. This approach led to the identification of esterase YbfF as the major E. coli enzyme responsible for the hydrolytic activity toward IPG esters. The gene coding for YbfF was cloned and overexpressed in E. coli, and the corresponding protein was purified and characterized for its biocatalytic performance. YbfF displays a high level of activity toward IPG butyrate and IPG caprylate and prefers the R-enantiomer of these substrates, producing the S-enantiomer of the IPG product with high enantiomeric excess (72 to 94% ee). The enantioselectivity of YbfF for IPG caprylate (E = 40) could be significantly enhanced when using dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as cosolvents in kinetic resolution experiments. The enzyme also shows high enantioselectivity toward 1-phenylethyl acetate (E ≥ 200), giving the chiral product (R)-1-phenylethanol with >99% ee. The high activity and enantioselectivity of YbfF make it an attractive enzyme for organic synthesis.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Esterases/metabolism , Esters/metabolism , Glycerol/analogs & derivatives , Alkenes/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Esterases/chemistry , Esterases/genetics , Esterases/isolation & purification , Gene Expression , Gene Knockout Techniques , Glycerol/metabolism , Models, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...