Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Mol Ther Methods Clin Dev ; 32(1): 101216, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38440160

ABSTRACT

Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.

2.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38053332

ABSTRACT

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Subject(s)
CD8-Positive T-Lymphocytes , Myeloid Differentiation Factor 88 , Animals , Mice , Capsid Proteins , Dendritic Cells , Interleukin-1/metabolism , Liver/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
3.
Front Immunol ; 14: 1278184, 2023.
Article in English | MEDLINE | ID: mdl-37954612

ABSTRACT

Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-ß (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFß and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFß expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.


Subject(s)
Interleukin-10 , T-Lymphocytes, Regulatory , Mice , Animals , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Forkhead Transcription Factors/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
4.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902453

ABSTRACT

Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function.


Subject(s)
Antigens, Ly , Signal Transduction , Animals , Mice , Antigens, Ly/genetics , Cell Line , Phosphorylation , Protein Isoforms/genetics
5.
Cell Immunol ; 385: 104675, 2023 03.
Article in English | MEDLINE | ID: mdl-36746071

ABSTRACT

Active tolerance to ingested dietary antigens forms the basis for oral immunotherapy to food allergens or autoimmune self-antigens. Alternatively, oral administration of anti-CD3 monoclonal antibody can be effective in modulating systemic immune responses without T cell depletion. Here we assessed the efficacy of full length and the F(ab')2 fragment of oral anti-CD3 to prevent anti-drug antibody (ADA) formation to clotting factor VIII (FVIII) protein replacement therapy in hemophilia A mice. A short course of low dose oral anti-CD3 F(ab')2 reduced the production of neutralizing ADAs, and suppression was significantly enhanced when oral anti-CD3 was timed concurrently with FVIII administration. Tolerance was accompanied by the early induction of FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+ populations of CD4+ T cells in the spleen and mesenteric lymph nodes. FoxP3+LAP+ Tregs expressing CD69, CTLA-4, and PD1 persisted in spleens of treated mice, but did not produce IL-10. Finally, we attempted to combine the anti-CD3 approach with oral intake of FVIII antigen (using our previously established method of using lettuce plant cells transgenic for FVIII antigen fused to cholera toxin B (CTB) subunit, which suppresses ADAs in part through induction of IL-10 producing FoxP3-LAP+ Treg). However, combining these two approaches failed to improve suppression of ADAs. We conclude that oral anti-CD3 treatment is a promising approach to prevention of ADA formation in systemic protein replacement therapy, albeit via mechanisms distinct from and not synergistic with oral intake of bioencapsulated antigen.


Subject(s)
Hemophilia A , Mice , Animals , Hemophilia A/drug therapy , Factor VIII , Interleukin-10/metabolism , Antibody Formation , Antibodies, Monoclonal , Forkhead Transcription Factors/metabolism , Immune Tolerance , T-Lymphocytes, Regulatory
6.
Mol Ther ; 30(12): 3552-3569, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35821634

ABSTRACT

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.


Subject(s)
Factor VIII , Interleukin-15 , Mice , Animals , Factor VIII/genetics , Interleukin-15/genetics , Sirolimus/pharmacology
7.
Front Immunol ; 13: 910112, 2022.
Article in English | MEDLINE | ID: mdl-35837407

ABSTRACT

Signaling lymphocytic activation molecule family 8 (SLAMF8) is involved in the negative modulation of NADPH oxidase activation. However, the impact of SLAMF8 downregulation on macrophage functionality and the microbicide mechanism remains elusive. To study this in depth, we first analyzed NADPH oxidase activation pathways in wild-type and SLAMF8-deficient macrophages upon different stimulus. Herein, we describe increased phosphorylation of the Erk1/2 and p38 MAP kinases, as well as increased phosphorylation of NADPH oxidase subunits in SLAMF8-deficient macrophages. Furthermore, using specific inhibitors, we observed that specific PI3K inhibition decreased the differences observed between wild-type and SLAMF8-deficient macrophages, stimulated with either PMA, LPS, or Salmonella typhimurium infection. Consequently, SLAMF8-deficient macrophages also showed increased recruitment of small GTPases such as Rab5 and Rab7, and the p47phox subunit to cytoplasmic Salmonella, suggesting an impairment of Salmonella-containing vacuole (SCV) progression in SLAMF8-deficient macrophages. Enhanced iNOS activation, NO production, and IL-6 expression were also observed in the absence of SLAMF8 upon Salmonella infection, either in vivo or in vitro, while overexpression of SLAMF8 in RAW264.7 macrophages showed the opposite phenotype. In addition, SLAMF8-deficient macrophages showed increased activation of Src kinases and reduced SHP-1 phosphate levels upon IFNγ and Salmonella stimuli in comparison to wild-type macrophages. In agreement with in vitro results, Salmonella clearance was augmented in SLAMF8-deficient mice compared to that in wild-type mice. Therefore, in conclusion, SLAMF8 intervention upon bacterial infection downregulates mouse macrophage activation, and confirmed that SLAMF8 receptor could be a potential therapeutic target for the treatment of severe or unresolved inflammatory conditions.


Subject(s)
Anti-Infective Agents , Membrane Proteins/metabolism , Salmonella Infections , Animals , Anti-Infective Agents/metabolism , Macrophages/metabolism , Mice , NADPH Oxidases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Salmonella Infections/metabolism , Signaling Lymphocytic Activation Molecule Family/genetics
8.
Cell Immunol ; 359: 104251, 2021 01.
Article in English | MEDLINE | ID: mdl-33248367

ABSTRACT

Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-ß, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.


Subject(s)
Immune Tolerance/immunology , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology , Administration, Oral , Allergens/immunology , Animals , Dendritic Cells/immunology , Food Hypersensitivity/immunology , Forkhead Transcription Factors/metabolism , Humans , Immunologic Factors , Intestinal Mucosa/immunology , Intestines/immunology , Peptides/metabolism , Protein Precursors/metabolism , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
9.
Trends Mol Med ; 26(9): 800-802, 2020 09.
Article in English | MEDLINE | ID: mdl-32857968

ABSTRACT

Empowering the ability of cytotoxic T cells to kill tumor cells or the reframing of their receptor to eliminate cancer cells has revolutionized cancer treatment. Simultaneously, the empowering of regulatory subsets has met success in mitigating autoimmune diseases. T cells, the major first responders of the immune system, are produced in the thymus, an organ that serves as their 'training camp'. On their exit to the periphery, T cells are effector cells that control infections or regulatory cells, which limit excessive responses.


Subject(s)
Immune System/immunology , T-Lymphocytes/immunology , Animals , Clinical Medicine/methods , Humans
10.
Front Immunol ; 11: 844, 2020.
Article in English | MEDLINE | ID: mdl-32508814

ABSTRACT

Fusion proteins, which consist of factor VIII or factor IX and the transmucosal carrier cholera toxin subunit B, expressed in chloroplasts and bioencapsulated within plant cells, initiate tolerogenic immune responses in the intestine when administered orally. This approach induces regulatory T cells (Treg), which suppress inhibitory antibody formation directed at hemophilia proteins induced by intravenous replacement therapy in hemophilia A and B mice. Further analyses of Treg CD4+ lymphocyte sub-populations in hemophilia B mice reveal a marked increase in the frequency of CD4+CD25-FoxP3-LAP+ T cells (but not of CD4+CD25+FoxP3+ T cells) in the lamina propria of the small but not large intestine. The adoptive transfer of very small numbers of CD4+CD25-LAP+ Treg isolated from the spleen of tolerized mice was superior in suppression of antibodies directed against FIX when compared to CD4+CD25+ T cells. Thus, tolerance induction by oral delivery of antigens bioencapsulated in plant cells occurs via the unique immune system of the small intestine, and suppression of antibody formation is primarily carried out by induced latency-associated peptide (LAP) expressing Treg that likely migrate to the spleen. Tolerogenic antigen presentation in the small intestine requires partial enzymatic degradation of plant cell wall by commensal bacteria in order to release the antigen. Microbiome analysis of hemophilia B mice showed marked differences between small and large intestine. Remarkably, bacterial species known to produce a broad spectrum of enzymes involved in degradation of plant cell wall components were found in the small intestine, in particular in the duodenum. These were highly distinct from populations of cell wall degrading bacteria found in the large intestine. Therefore, FIX antigen presentation and Treg induction by the immune system of the small intestine relies on activity of a distinct microbiome that can potentially be augmented to further enhance this approach.


Subject(s)
Cholera Toxin/immunology , Factor IX/immunology , Gastrointestinal Microbiome/immunology , Hemophilia B/immunology , Hemophilia B/microbiology , Immune Tolerance/immunology , Intestine, Small/immunology , Intestine, Small/microbiology , Plant Cells/metabolism , Administration, Oral , Adoptive Transfer/methods , Animals , Antigen Presentation , Antigens/genetics , Antigens/immunology , Cholera Toxin/genetics , Disease Models, Animal , Factor IX/genetics , Gene Deletion , Genome, Chloroplast , Lactuca/genetics , Male , Mice , Mice, Transgenic , Plants, Genetically Modified , T-Lymphocytes, Regulatory/immunology
11.
Mol Ther ; 28(3): 709-722, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31968213

ABSTRACT

Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.


Subject(s)
Genetic Vectors/genetics , Immunity , Viruses/genetics , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance , Immunity, Innate , Signal Transduction , Viruses/immunology
12.
Mol Ther ; 28(3): 758-770, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31780366

ABSTRACT

Adeno-associated virus (AAV) vectors are widely used in clinical gene therapy to correct genetic disease by in vivo gene transfer. Although the vectors are useful, in part because of their limited immunogenicity, immune responses directed at vector components have complicated applications in humans. These include, for instance, innate immune sensing of vector components by plasmacytoid dendritic cells (pDCs), which sense the vector DNA genome via Toll-like receptor 9. Adaptive immune responses employ antigen presentation by conventional dendritic cells (cDCs), which leads to cross-priming of capsid-specific CD8+ T cells. In this study, we sought to determine the mechanisms that promote licensing of cDCs, which is requisite for CD8+ T cell activation. Blockage of type 1 interferon (T1 IFN) signaling by monoclonal antibody therapy prevented cross-priming. Furthermore, experiments in cell-type-restricted knockout mice showed a specific requirement for the receptor for T1 IFN (IFNaR) in cDCs. In contrast, natural killer (NK) cells are not needed, indicating a direct rather than indirect effect of T1 IFN on cDCs. In addition, co-stimulation by CD4+ T cells via CD40-CD40L was required for cross-priming, and blockage of co-stimulation but not of T1 IFN additionally reduced antibody formation against capsid. These mechanistic insights inform the development of targeted immune interventions.


Subject(s)
Capsid/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon Type I/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Capsid Proteins/immunology , Dependovirus/immunology , Gene Deletion , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Genetic Vectors/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Models, Biological , Receptor, Interferon alpha-beta/genetics , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
13.
Cancer Immunol Res ; 7(9): 1485-1496, 2019 09.
Article in English | MEDLINE | ID: mdl-31315913

ABSTRACT

The tumor microenvironment in leukemia and solid tumors induces a shift of activated CD8+ cytotoxic T cells to an exhausted state, characterized by loss of proliferative capacity and impaired immunologic synapse formation. Efficient strategies and targets need to be identified to overcome T-cell exhaustion and further improve overall responses in the clinic. Here, we took advantage of the Eµ-TCL1 chronic lymphocytic leukemia (CLL) and B16 melanoma mouse models to assess the role of the homophilic cell-surface receptor SLAMF6 as an immune-checkpoint regulator. The transfer of SLAMF6+ Eµ-TCL1 cells into SLAMF6-/- recipients, in contrast to wild-type (WT) recipients, significantly induced expansion of a PD-1+ subpopulation among CD3+CD44+CD8+ T cells, which had impaired cytotoxic functions. Conversely, administering anti-SLAMF6 significantly reduced the leukemic burden in Eµ-TCL1 recipient WT mice concomitantly with a loss of PD-1+CD3+CD44+CD8+ T cells with significantly increased effector functions. Anti-SLAMF6 significantly reduced leukemic burden in the peritoneal cavity, a niche where antibody-dependent cellular cytotoxicity (ADCC) is impaired, possibly through activation of CD8+ T cells. Targeting of SLAMF6 affected tumor growth not only in B cell-related leukemia and lymphomas but also in nonhematopoietic tumors such as B16 melanoma, where SLAMF6 is not expressed. In vitro exhausted CD8+ T cells showed increased degranulation when anti-human SLAMF6 was added in culture. Taken together, anti-SLAMF6 both effectively corrected CD8+ T-cell dysfunction and had a direct effect on tumor progression. The outcomes of our studies suggest that targeting SLAMF6 is a potential therapeutic strategy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunomodulation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Signaling Lymphocytic Activation Molecule Family/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers , Cytotoxicity, Immunologic , Disease Models, Animal , Humans , Immunomodulation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma, Experimental , Mice , Mice, Knockout , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/metabolism , Signaling Lymphocytic Activation Molecule Family/genetics , Tumor Microenvironment/immunology
14.
Hum Gene Ther Methods ; 30(3): 81-92, 2019 06.
Article in English | MEDLINE | ID: mdl-31140323

ABSTRACT

Innate immune signals that promote B cell responses in gene transfer are generally ill-defined. In this study, we evaluate the effect of activating endosomal Toll-like receptors 7, 8, and 9 (TLR7, TLR7/8, and TLR9) on antibody formation during muscle-directed gene therapy with adeno-associated virus (AAV) vectors. We examined whether activation of endosomal TLRs, by adenine analog CL264 (TLR7 agonist), imidazolquinolone compound R848 (TLR7/8 agonist), or class B CpG oligodeoxynucleotides ODN1826 (TLR9 agonist), could augment antibody formation upon intramuscular administration of AAV1 expressing human clotting factor IX (AAV1-hFIX) in mice. The TLR9 agonist robustly enhanced antibody formation by the 1st week, thus initially eliminating systemic hFIX expression. By contrast, the TLR7 and TLR7/8 agonists did not markedly promote antibody formation, or significantly reduce circulating hFIX. We concurrently investigated the effects of these TLR agonists during muscle gene transfer on mature B cells and dendritic cells (DCs) in the draining lymph nodes including conventional DCs (CD11b+ or CD8α+ cDCs), monocyte-derived dendritic cells (moDCs), and plasmacytoid dendritic cells (pDCs). Only TLR9 stimulation caused a striking increase in the frequency of moDCs within 24 h. The TLR7/8 and TLR9 agonists activated pDCs, both subsets of cDCs, and mature B cells, whereas the TLR7 agonist had only mild effects on these cells. Thus, these TLR ligands have distinct effects on DCs and mature B cells, yet only the TLR9 agonist enhanced the humoral immune response against AAV-expressed hFIX. These new findings indicate a unique ability of certain TLR9 agonists to stimulate B cell responses in muscle gene transfer through enrichment of moDCs.


Subject(s)
Antibody Formation , B-Lymphocytes/immunology , Dendritic Cells/immunology , Factor IX/immunology , Parvovirinae/genetics , Quadriceps Muscle/immunology , Toll-Like Receptor 9/agonists , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Dependovirus , Factor IX/genetics , Genetic Therapy , Imidazoles/pharmacology , Male , Membrane Glycoproteins/agonists , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Oligodeoxyribonucleotides , Quadriceps Muscle/metabolism , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/immunology
15.
Front Immunol ; 10: 831, 2019.
Article in English | MEDLINE | ID: mdl-31057553

ABSTRACT

Absence of the mouse cell surface receptor SLAMF3 in SLAMF3-/- mice suggested that this receptor negatively regulates B cell homeostasis by modulating activation thresholds of B cell subsets. Here, we examine whether anti-SLAMF3 affects both B and T cell subsets during immune responses to haptenated ovalbumin [NP-OVA] and in the setting of chronic graft vs. host disease (cGVHD) induced by transferring B6.C-H2bm12/KhEg (bm12) CD4+ T cells into B6 WT mice. We find that administering αSLAMF3 to NP-OVA immunized B6 mice primarily impairs antibody responses and Germinal center B cell [GC B] numbers, whilst CXCR5+, PD-1+, and ICOS+ T follicular helper (TFH) cells are not significantly affected. By contrast, administering αSLAMF3 markedly enhanced autoantibody production upon induction of cGVHD by the transfer of bm12 CD4+ T cells into B6 recipients. Surprisingly, αSLAMF3 accelerated both the differentiation of GC B and donor-derived TFH cells initiated by cGVHD. The latter appeared to be induced by decreased numbers of donor-derived Treg and T follicular regulatory (TFR) cells. Collectively, these data show that control of anti-SLAMF3-induced signaling is requisite to prevent autoantibody responses during cGVHD, but reduces responses to foreign antigens.


Subject(s)
B-Lymphocyte Subsets/immunology , Cell Proliferation , Graft vs Host Disease/immunology , Signal Transduction/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Animals , B-Lymphocyte Subsets/pathology , Female , Germinal Center/immunology , Germinal Center/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Mice , Mice, Knockout , Signaling Lymphocytic Activation Molecule Family/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
16.
Front Immunol ; 10: 274, 2019.
Article in English | MEDLINE | ID: mdl-30842776

ABSTRACT

Coagulation Factor VIII (FVIII) replacement therapy in hemophilia A patients is complicated by the development of inhibitory antibodies, which often render the treatment ineffective. Previous studies demonstrated a strong correlation between induction of regulatory T cells (Treg) and tolerance to the therapeutic protein. We, therefore, set out to evaluate whether the adoptive transfer of FVIII-specific CD4+ Treg cells prevents inhibitor response to FVIII protein therapy. To this end, we first retrovirally transduced FoxP3+ into FVIII-specific CD4+ cells, which resulted in cells that stably express FoxP3, are phenotypically similar to peripherally induced Tregs and are antigen specific suppressors, as judged by in vitro assays. Upon transfer of the FVIII-specific CD4+ FoxP3+ cells into hemophilia A mice, development of inhibitory antibodies in response to administering FVIII protein was completely suppressed. Suppression was extended for 2 months, even after transferred cells were no longer detectable in the secondary lymphoid organs of recipient animals. Upon co-transfer of FoxP3+-transduced cells with the B cell depleting anti-CD20 into mice with pre-existing inhibitory antibodies to FVIII, the escalation of inhibitory antibody titers in response to subsequent FVIII protein therapy was dramatically reduced. We conclude that reprogramed FoxP3 expressing cells are capable of inducing the in vivo conversion of endogenous FVIII peripheral Tregs, which results in sustained suppression of FVIII inhibitors caused by replacement therapy in recipient hemophilia A animals.


Subject(s)
Antibody Formation/immunology , CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/immunology , Hemophilia A/immunology , Adoptive Transfer/methods , Animals , Antibodies, Blocking/immunology , B-Lymphocytes/immunology , Factor VIII/immunology , Immune Tolerance/immunology , Male , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology
17.
Cell Immunol ; 342: 103682, 2019 08.
Article in English | MEDLINE | ID: mdl-28888664

ABSTRACT

Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.


Subject(s)
Dependovirus/genetics , Factor IX/genetics , Factor IX/immunology , Gene Transfer Techniques , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptor 9/physiology , Animals , Antibody Formation , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Oligodeoxyribonucleotides/pharmacology , Transgenes
19.
Sci Signal ; 11(558)2018 11 27.
Article in English | MEDLINE | ID: mdl-30482849

ABSTRACT

The outer membranes of Gram-negative bacteria and mitochondria contain proteins with a distinct ß-barrel tertiary structure that could function as a molecular pattern recognized by the innate immune system. Here, we report that purified outer membrane proteins (OMPs) from different bacterial and mitochondrial sources triggered the induction of autophagy-related endosomal acidification, LC3B lipidation, and p62 degradation. Furthermore, OMPs reduced the phosphorylation and therefore activation of the multiprotein complex mTORC2 and its substrate Akt in macrophages and epithelial cells. The cell surface receptor SlamF8 and the DNA-protein kinase subunit XRCC6 were required for these OMP-specific responses in macrophages and epithelial cells, respectively. The addition of OMPs to mouse bone marrow-derived macrophages infected with Salmonella Typhimurium facilitated bacterial clearance. These data identify a specific cellular response mediated by bacterial and mitochondrial OMPs that can alter inflammatory responses and influence the killing of pathogens.


Subject(s)
Autophagy , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/pathology , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mitochondrial Membranes/pathology , Monocytes/pathology , Salmonella Infections/pathology , Animals , Cell Membrane/metabolism , Cells, Cultured , Humans , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mitochondrial Membranes/metabolism , Monocytes/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/isolation & purification , Signaling Lymphocytic Activation Molecule Family/metabolism
20.
J Immunol ; 201(5): 1536-1548, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30012849

ABSTRACT

We recently showed that 2B4 expression on memory T cells in human renal transplant recipients was associated with reduced rates of rejection. To investigate whether 2B4 functionally underlies graft acceptance during transplantation, we established an experimental model in which 2B4 was retrogenically expressed on donor-reactive murine CD8+ T cells (2B4rg), which were then transferred into naive recipients prior to skin transplantation. We found that constitutive 2B4 expression resulted in significantly reduced accumulation of donor-reactive CD8+ T cells following transplantation and significantly prolonged graft survival following transplantation. This marked reduction in alloreactivity was due to reduced proliferation of CD8+ Thy1.1+ 2B4rg cells as compared with control cells, underpinned by extracellular flux analyses demonstrating that 2B4-deficient (2B4KO) CD8+ cells activated in vitro exhibited increased glycolytic capacity and upregulation of gene expression profiles consistent with enhanced glycolytic machinery as compared with wild type controls. Furthermore, 2B4KO CD8+ T cells primed in vivo exhibited significantly enhanced ex vivo uptake of a fluorescent glucose analogue. Finally, the proliferative advantage associated with 2B4 deficiency was only observed in the setting of glucose sufficiency; in glucose-poor conditions, 2B4KO CD8+ T cells lost their proliferative advantage. Together, these data indicate that 2B4 signals function to alter T cell glucose metabolism, thereby limiting the proliferation and accumulation of CD8+ T cells. Targeting 2B4 may therefore represent a novel therapeutic strategy to attenuate unwanted CD8+ T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Division/immunology , Glycolysis/immunology , Graft Survival/immunology , Lymphocyte Activation , Signal Transduction/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Skin Transplantation , Animals , Cell Division/genetics , Glycolysis/genetics , Graft Survival/genetics , Mice , Mice, Knockout , Signal Transduction/genetics , Signaling Lymphocytic Activation Molecule Family/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...