Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 6(9): 2335-49, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25169983

ABSTRACT

NAD(+) is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD(+) biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD(+) biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD(+) biosynthesis in eukaryotes was shaped by numerous gene transfers.


Subject(s)
Eukaryota/metabolism , Evolution, Molecular , Gene Transfer, Horizontal , NAD/biosynthesis , Animals , Eukaryota/classification , Eukaryota/genetics , Humans , Metabolic Networks and Pathways , Phylogeny
2.
Science ; 339(6124): 1207-10, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23471408

ABSTRACT

Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genes, Archaeal , Genes, Bacterial , Genome, Plant/genetics , Rhodophyta/genetics , Rhodophyta/microbiology , Adenosine Triphosphatases/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Algal , Phylogeny , Rhodophyta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL