Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 114: 109272, 2023 04.
Article in English | MEDLINE | ID: mdl-36681309

ABSTRACT

This study was designed to evaluate the long-term effects of Fructose (20%) feeding in rats, simulating metabolic syndrome (MetS), and the effects of coconut oil (C.O.) supplementation when administered in a MetS context. MetS is a cluster of systemic conditions that represent an increased chance of developing cardiovascular diseases and type 2 diabetes in the future. C.O. has been the target of media speculation, and recent studies report inconsistent results. C.O. improved glucose homeostasis and reduced fat accumulation in Fructose-fed rats while decreasing the levels of triglycerides (TGs) in the liver. C.O. supplementation also increased TGs levels and fructosamine in serum during MetS, possibly due to white adipose tissue breakdown and high fructose feeding. Pro-inflammatory cytokines IL-1ß and TNF-α were also increased in rats treated with Fructose and C.O. Oxidative stress marker nitrotyrosine is increased in fructose-fed animals, and C.O. treatment did not prevent this damage. No significant changes were observed in lipoperoxidation marker 4-Hydroxynonenal; however, fructose feeding increased total conjugated dienes and caused conjugated dienes to switch their conformation from cis-trans to trans-trans, which was not prevented by C.O. treatment. Potential benefits of C.O. have been reported with inconsistent results, and indeed we observed some benefits of C.O. supplementation in aiding weight loss, fat accumulation, and improving glucose homeostasis. Nonetheless, we also demonstrated that long-term C.O. supplementation could present some problematic effects with higher risk for individuals suffering MetS, including increased TGs and fructosamine levels and conformational changes in dienes.


Subject(s)
Coconut Oil , Dietary Supplements , Metabolic Syndrome , Animals , Rats , Blood Glucose/metabolism , Coconut Oil/pharmacology , Coconut Oil/therapeutic use , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Fructosamine/metabolism , Fructosamine/pharmacology , Fructose/metabolism , Glucose/metabolism , Homeostasis , Liver/metabolism , Metabolic Syndrome/diet therapy , Metabolic Syndrome/metabolism , Oxidative Stress , Rats, Wistar , Inflammation/diet therapy , Inflammation/metabolism
2.
Cell Biol Toxicol ; 33(2): 197-206, 2017 04.
Article in English | MEDLINE | ID: mdl-27744523

ABSTRACT

Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit-popularly known as pitanga-has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 µg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Eugenia/chemistry , Hepatic Stellate Cells/pathology , Plant Extracts/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Cell Line , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Phytotherapy , Plant Extracts/therapeutic use
3.
Mol Cell Endocrinol ; 403: 78-87, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25591908

ABSTRACT

Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation.


Subject(s)
Adenylyl Cyclases/genetics , Calcitonin Receptor-Like Protein/genetics , Glycoproteins/metabolism , Osteoblasts/metabolism , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Calcitonin/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Receptor-Like Protein/metabolism , Cell Differentiation , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Colforsin/pharmacology , Cyclic AMP/metabolism , Gene Expression Regulation , Glycoproteins/pharmacology , HEK293 Cells , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Protein Multimerization , Receptor Activity-Modifying Protein 1/genetics , Receptor Activity-Modifying Protein 1/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism
4.
Vet Clin Pathol ; 43(3): 362-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25135622

ABSTRACT

BACKGROUND: Additive solutions (AS) and prestorage leukoreduction (LR) are important tools used to maintain erythrocyte viability during storage and avoid transfusion reactions in recipients, respectively. OBJECTIVES: The purpose of the study was to determine the efficacy of a WBC filter (Immugard IIIRC) and compare the effect of 4 AS (phosphate-adenine-glucose-guanosine-gluconate-mannitol [PAGGGM], saline-adenine-glucose-mannitol [SAGM], Adsol, Optisol) on the in vitro quality of canine leukoreduced packed RBC units (pRBC) stored for 41 days. METHODS: Five hundred milliliters of blood were collected from 8 healthy dogs each into 70 mL of citrate-phosphate-dextrose (CPD) solution, and were leukoreduced by a polyurethane filter. pRBC of each dog were divided equally into 4 bags containing a different AS. Bags were stored for 41 days at 4°C and evaluated every 10 days. Variables analyzed included pH, PCV, and% hemolysis, and lactate, glucose, potassium, sodium, ATP, and 2,3-diphosphoglycerate (2,3-DPG) concentrations. RESULTS: The LR resulted in residual WBC counts comparable to human standards. During storage, pH, and glucose, 2,3-DPG, and ATP concentrations decreased, and hemolysis, and lactate, sodium, and potassium concentrations increased (P < .05). Significant differences between AS were seen in the glucose and sodium concentrations, due to the composition of AS. Also, the pH maintained by PAGGGM at day 21 was significantly higher than that seen with SAGM or Adsol. CONCLUSIONS: All AS used gave satisfactory results during the first 21 days of storage based on the degree of hemolysis, and on ATP and 2,3-DPG concentrations. When compared with day 1 values, significant changes were seen in these variables by day 31 with all AS.


Subject(s)
Adenine/pharmacology , Blood Preservation/veterinary , Dogs/blood , Erythrocytes/drug effects , Glucose/pharmacology , Leukocyte Reduction Procedures/veterinary , Mannitol/pharmacology , Sodium Chloride/pharmacology , 2,3-Diphosphoglycerate/blood , Adenosine Triphosphate/blood , Animals , Blood Preservation/methods , Blood Preservation/standards , Cell Survival , Citrates/pharmacology , Female , Hemolysis , Leukocyte Reduction Procedures/methods , Male , Transfusion Reaction/prevention & control , Transfusion Reaction/veterinary
5.
Cell Biochem Funct ; 32(1): 16-23, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23475531

ABSTRACT

The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect.


Subject(s)
Cell Proliferation/drug effects , Cell Survival/drug effects , Cytotoxins/pharmacology , Hepatic Stellate Cells/drug effects , Plant Extracts/pharmacology , Syzygium/chemistry , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Hepatic Stellate Cells/cytology , Membrane Potential, Mitochondrial/drug effects , Mice , Schistosoma mansoni
SELECTION OF CITATIONS
SEARCH DETAIL