Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Am J Hematol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646919

ABSTRACT

Emerging evidence shows the crucial role of inflammation (particularly NF-κB pathway) in the development and progression of myelofibrosis (MF), becoming a promising therapeutic target. Furthermore, tailoring treatment with currently available JAK inhibitors (such as ruxolitinib or fedratinib) does not modify the natural history of the disease and has important limitations, including cytopenias. Since recent studies have highlighted the role of miR-146a, a negative regulator of the NF-κB pathway, in the pathogenesis of MF; here we used miR-146a-/- (KO) mice, a MF-like model lacking driver mutations, to investigate whether pharmacological inhibition of JAK/STAT and/or NF-κB pathways may reverse the myelofibrotic phenotype of these mice. Specifically, we tested the JAK1/2 inhibitor, ruxolitinib; the NF-κB inhibitor via IKKα/ß, BMS-345541; both inhibitors in combination; or a dual inhibitor of both pathways (JAK2/IRAK1), pacritinib. Although all treatments decreased spleen size and partially recovered its architecture, only NF-κB inhibition, either using BMS-345541 (alone or in combination) or pacritinib, resulted in a reduction of extramedullary hematopoiesis, bone marrow (BM) fibrosis and osteosclerosis, along with an attenuation of the exacerbated inflammatory state (via IL-1ß and TNFα). However, although dual inhibitor improved anemia and reversed thrombocytopenia, the combined therapy worsened anemia by inducing BM hypoplasia. Both therapeutic options reduced NF-κB and JAK/STAT signaling in a context of JAK2V617F-driven clonal hematopoiesis. Additionally, combined treatment reduced both COL1A1 and IL-6 production in an in vitro model mimicking JAK2-driven fibrosis. In conclusion, NF-κB inhibition reduces, in vitro and in vivo, disease burden and BM fibrosis, which could provide benefits in myelofibrosis patients.

3.
Br J Haematol ; 204(3): 988-1004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38062782

ABSTRACT

Neonatal platelets present a reduced response to the platelet agonist, thrombin (Thr), thus resulting in a deficient Thr-induced aggregation. These alterations are more pronounced in premature newborns. Here, our aim was to uncover the causes underneath the impaired Ca2+ homeostasis described in neonatal platelets. Both Ca2+ mobilization and Ca2+ influx in response to Thr are decreased in neonatal platelets compared to maternal and control woman platelets. In neonatal platelets, we observed impaired Ca2+ mobilization in response to the PAR-1 agonist (SFLLRN) or by blocking SERCA3 function with tert-butylhydroquinone. Regarding SOCE, the STIM1 regulatory protein, SARAF, was found overexpressed in neonatal platelets, promoting an increase in STIM1/SARAF interaction even under resting conditions. Additionally, higher interaction between SARAF and PDCD61/ALG2 was also observed, reducing SARAF ubiquitination and prolonging its half-life. These results were reproduced by overexpressing SARAF in MEG01 and DAMI cells. Finally, we also observed that pannexin 1 permeability is enhanced in response to Thr in control woman and maternal platelets, but not in neonatal platelets, hence, leading to the deregulation of the Ca2+ entry found in neonatal platelets. Summarizing, we show that in neonatal platelets both Ca2+ accumulation in the intracellular stores and Thr-evoked Ca2+ entry through either capacitative channels or non-selective channels are altered in neonatal platelets, contributing to deregulated Ca2+ homeostasis in neonatal platelets and leading to the altered aggregation observed in these subjects.


Subject(s)
Membrane Proteins , Thrombin , Infant, Newborn , Humans , Thrombin/metabolism , Membrane Proteins/metabolism , Blood Platelets/metabolism , Homeostasis , Calcium/metabolism , Calcium Signaling
4.
Cell Rep Med ; 4(12): 101329, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118408

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1ß release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1ß release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.


Subject(s)
Inflammasomes , Leukemia, Myelomonocytic, Chronic , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myelomonocytic, Chronic/genetics , Symptom Burden , Interleukin-1/metabolism
6.
J Thromb Haemost ; 21(5): 1352-1365, 2023 05.
Article in English | MEDLINE | ID: mdl-36736831

ABSTRACT

BACKGROUND: Germline mutations in RUNX1 can cause a familial platelet disorder that may lead to acute myeloid leukemia, an autosomal dominant disorder characterized by moderate thrombocytopenia, platelet dysfunction, and a high risk of developing acute myeloid leukemia or myelodysplastic syndrome. Discerning the pathogenicity of novel RUNX1 variants is critical for patient management. OBJECTIVES: To extend the characterization of RUNX1 variants and evaluate their effects by transcriptome analysis. METHODS: Three unrelated patients with long-standing thrombocytopenia carrying heterozygous RUNX1 variants were included: P1, who is a subject with recent development of myelodysplastic syndrome, with c.802 C>T[p.Gln268∗] de novo; P2 with c.586A>G[p.Thr196Ala], a variant that segregates with thrombocytopenia and myeloid neoplasia in the family; and P3 with c.476A>G[p.Asn159Ser], which did not segregate with thrombocytopenia or neoplasia. Baseline platelet evaluations were performed. Ultrapure platelets were prepared for platelet transcriptome analysis. RESULTS: In P1 and P2, but not in P3, transcriptome analysis confirmed aberrant expression of genes recognized as RUNX1 targets. Data allowed grouping patients by distinct gene expression profiles, which were partitioned with clinical parameters. Functional studies and platelet mRNA expression identified alterations in the actin cytoskeleton, downregulation of GFI1B, defective GPVI downstream signaling, and reduction of alpha granule proteins, such as thrombospondin-1, as features likely implicated in thrombocytopenia and platelet dysfunction. CONCLUSION: Platelet phenotype, familial segregation, and platelet transcriptomics support the pathogenicity of RUNX1 variants p.Gln268∗ and p.Thr196Ala, but not p.Asn159Ser. This study is an additional proof of concept that platelet RNA analysis could be a tool to help classify pathogenic RUNX1 variants and identify novel RUNX1 targets.


Subject(s)
Blood Platelet Disorders , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Germ-Line Mutation , Blood Platelet Disorders/complications , Thrombocytopenia/genetics , Thrombocytopenia/complications , Leukemia, Myeloid, Acute/genetics , Gene Expression Profiling , Germ Cells/metabolism , Mutation
7.
Cancers (Basel) ; 13(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34503142

ABSTRACT

The game-changing outcome effect, due to the generalized use of novel agents in MM, has cre-ated a paradigm shift. Achieving frequent deep responses has placed MM among those neoplasms where the rationale for assessing MRD is fulfilled. However, its implementation in MM has raised specific questions: how might we weight standard measures against deep MRD in the emerging CAR-T setting? Which high sensitivity method to choose? Are current response criteria still useful? In this work, we address lessons learned from the use of MRD in other neoplasms, the steps followed for the harmonization of current methods for comprehensively measuring MRD, and the challenges that new therapies and concepts pose in the MM clinical field.

8.
J Clin Med ; 10(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300312

ABSTRACT

The most frequent BCR-ABL1-p210 transcripts in chronic myeloid leukemia (CML) are e14a2 and e13a2. Imatinib (IM) is the most common first-line tyrosine-kinase inhibitor (TKI) used to treat CML. Some studies suggest that BCR-ABL1 transcript types confer different responses to IM. The objective of this study was to correlate the expression of e14a2 or e13a2 to clinical characteristics, cumulative cytogenetic and molecular responses to IM, acquisition of deep molecular response (DMR) and its duration (sDMR), progression rate (CIP), overall survival (OS), and treatment-free remission (TFR) rate. We studied 202 CML patients, 76 expressing the e13a2 and 126 the e14a2, and correlated the differential transcript expression with the above-mentioned parameters. There were no differences in the cumulative incidence of cytogenetic responses nor in the acquisition of DMR and sDMR between the two groups, but the e14a2 transcript had a positive impact on molecular response during the first 6 months, whereas the e13a2 was associated with improved long-term OS. No correlation was observed between the transcript type and TFR rate.

9.
Aging (Albany NY) ; 13(14): 18094-18105, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34310343

ABSTRACT

BACKGROUND: To date, available data on premature aging in young HIV-infected adults are scarce and no reports offer comprehensive assessment of telomere shortening (TS) in relation to subclinical atherosclerosis (SCA). In this study, we investigate if telomere shortening and immune activation markers are associated with SCA, which is one of the main degenerative diseases in young HIV-infected adults. METHODS: A descriptive cross-sectional study was carried out in 149 HIV-infected patients on stable antiretroviral regimen (ART). Carotid intima-media thickness (cIMT) was estimated by carotid ultrasound. Quantitative singleplex PCR was performed to evaluate TS. The expression of activation/senescence markers was evaluated by multiparametric flow cytometry. RESULTS: TS was observed in 73 patients (49%). Higher cIMT was observed in patients with TS than those without it (0.86 vs. 0.80 mm; p=0.041). Patients under the age of 50 (defined as young adults) with TS showed higher absolute numbers of activated lymphocyte T cells CD8+CD38+ (3.94 vs. 2.34 cell/µl; p=0.07) and lymphocyte B cells CD19+CD38+ (3.07 vs. 2.10 cell/µl; p=0.004) compared to those without TS. In the multivariate analysis, the only factor independently associated with TS was the absolute number of lymphocyte T cells CD8+CD38+ T cells (OR = 1.18; 95%-CI = 1.00-1.39; p = 0.05). CONCLUSION: Young HIV-infected adults show premature biological aging with accentuated immune activation. Chronic inflammation with excessive T-cells activation could be associated to TS, premature aging, and SCA in young HIV-infected adults.


Subject(s)
Aging, Premature , Atherosclerosis/immunology , Carotid Intima-Media Thickness , HIV Infections/immunology , Telomere Shortening , Adult , Anti-Retroviral Agents/therapeutic use , Atherosclerosis/diagnostic imaging , Atherosclerosis/virology , Biomarkers , CD8-Positive T-Lymphocytes/immunology , Carotid Arteries/diagnostic imaging , Cross-Sectional Studies , Female , HIV Infections/drug therapy , Humans , Logistic Models , Lymphocyte Activation , Male , Middle Aged
10.
Int J Mol Sci ; 22(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672065

ABSTRACT

Exosomes are extracellular vesicles that contain nucleic acids, lipids and metabolites, and play a critical role in health and disease as mediators of intercellular communication. The majority of extracellular vesicles in the blood are platelet-derived. Compared to adults, neonatal platelets are hyporeactive and show impaired granule release, associated with defects in Soluble N-ethylmaleimide-sensitive fusion Attachment protein REceptor (SNARE) proteins. Since these proteins participate in biogenesis of exosomes, we investigated the potential differences between newborn and adult plasma-derived exosomes. Plasma-derived exosomes were isolated by ultracentrifugation of umbilical cord blood from full-term neonates or peripheral blood from adults. Exosome characterization included size determination by transmission electron microscopy and quantitative proteomic analysis. Plasma-derived exosomes from neonates were significantly smaller and contained 65% less protein than those from adults. Remarkably, 131 proteins were found to be differentially expressed, 83 overexpressed and 48 underexpressed in neonatal (vs. adult) exosomes. Whereas the upregulated proteins in plasma exosomes from neonates are associated with platelet activation, coagulation and granule secretion, most of the underexpressed proteins are immunoglobulins. This is the first study showing that exosome size and content change with age. Our findings may contribute to elucidating the potential "developmental hemostatic mismatch risk" associated with transfusions containing plasma exosomes from adults.


Subject(s)
Blood Platelets/cytology , Exosomes/metabolism , Exosomes/ultrastructure , Fetal Blood/cytology , Plasma/cytology , Adult , Blood Coagulation , Cytoplasmic Granules/metabolism , Humans , Immunoglobulins/blood , Infant, Newborn , Microscopy, Electron, Transmission/methods , Platelet Activation , Protein S/analysis , Protein S/metabolism , Proteome , Proteomics/methods , Qualitative Research , Ultracentrifugation , von Willebrand Factor/analysis , von Willebrand Factor/metabolism
11.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498945

ABSTRACT

Thrombosis is a major cause of morbimortality in patients with chronic Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). In the last decade, multiple lines of evidence support the role of leukocytes in thrombosis of MPN patients. Besides the increase in the number of cells, neutrophils and monocytes of MPN patients show a pro-coagulant activated phenotype. Once activated, neutrophils release structures composed of DNA, histones, and granular proteins, called extracellular neutrophil traps (NETs), which in addition to killing pathogens, provide an ideal matrix for platelet activation and coagulation mechanisms. Herein, we review the published literature related to the involvement of NETs in the pathogenesis of thrombosis in the setting of MPN; the effect that cytoreductive therapies and JAK inhibitors can have on markers of NETosis, and, finally, the novel therapeutic strategies targeting NETs to reduce the thrombotic complications in these patients.


Subject(s)
Leukemia/complications , Myeloproliferative Disorders/complications , Neutrophils , Thrombosis/etiology , Animals , Humans , Leukemia/immunology , Myeloproliferative Disorders/immunology , Thrombosis/immunology
12.
J Clin Med ; 9(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198388

ABSTRACT

Background. Atrial fibrillation (AF) increases the risk for stroke but also for non-stroke major adverse cardiovascular events (MACE). The 2MACE score was recently proposed to predict these events. Since the interest of microRNAs (miRNAs) in cardiovascular diseases is increasing, we aimed to investigate whether miRNA levels may improve the predictive performance of the 2MACE score. Methods. We included consecutive AF patients stable on vitamin K antagonist therapy. Blood samples were drawn at baseline and plasma expression of miRNAs was assessed. During a median of 7.6 (interquartile range (IQR) 5.4-8.0) years, the occurrence of any MACE (nonfatal myocardial infarction/cardiac revascularization and cardiovascular death) was recorded. Results. We conducted a miRNA expression analysis in plasma from 19 patients with and without cardiovascular events. The miRNAs selected (miR-22-3p, miR-107, and miR-146a-5p) were later measured in 166 patients (47% male, median age 77 (IQR 70-81) years) and all were associated with a higher risk of MACE. The addition of miR-107 and miR-146a-5p to the 2MACE score significantly increased the predictive performance (c-indexes: 0.759 vs. 0.694, p = 0.004), and the model with three miRNAs also improved the predictive performance compared to the original score (c-indexes: 0.762 vs. 0.694, p = 0.012). 2MACE models with the addition of miRNAs presented higher net benefit and potential clinical usefulness. Conclusions. Higher miR-22-3p andmiR-107 and lower miR-146a-5p levels were associated with a higher risk of MACE. The addition of these miRNAs to the 2MACE score significantly increased the predictive performance for MACE, which may aid to some extent in the decision-making process about risk stratification in AF.

13.
J Assist Reprod Genet ; 37(10): 2473-2476, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32766925

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKI) treatment has transformed chronic myeloid leukemia (CML) from a fatal neoplasm to a chronic disease with normal life expectancies. Indeed, half of CML patients are able to discontinue TKI without relapse. However, it seems clearly demonstrated that exposure to TKI may result in fetal malformations. Regarding its effects on fertility, preclinical studies and clinical case reports provide inconclusive evidence. Furthermore, due to the risk of CML relapse after TKI discontinuation, the optimal time to stop TKI represents a real dilemma. CASE REPORT: We describe a 23-year-old woman who, after more than 6 years with imatinib and 1 year in deep molecular response [(DMR), MR ≥ 4], interrupted treatment to become pregnant. After 2 failed artificial insemination cycles, she underwent one process of controlled ovarian stimulation, achieving 2 blastocyst-embryos. In the meantime, BCR-ABL1IS levels increased despite interferon-alpha therapy, she lost the mayor molecular response (MMR), and the 2 embryos had to be cryopreserved. A stable second MR ≥ 4.0 was again obtained with nilotinib, and after stopping it, the 2 blastocyst-embryo transfers were unsuccessfully performed. Under DMR, a second ovarian stimulation and in vitro fertilization (IVF) was performed and 1 blastocyst embryo was transferred. This time, she became pregnant and a healthy baby was born. After more than 3 years of follow-up, she remains in treatment-free remission (TFR). CONCLUSION: Compared with imatinib, nilotinib achieves earlier and deeper MR that allows safe and timely pregnancies in infertile CML women through IVF process, while patients remain in TFR after delivery.


Subject(s)
Embryo Transfer , Fertilization in Vitro , Infertility, Female/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Adult , Blastocyst/drug effects , Cryopreservation , Female , Fusion Proteins, bcr-abl/genetics , Humans , Imatinib Mesylate/administration & dosage , Imatinib Mesylate/adverse effects , Infertility, Female/pathology , Interferon-alpha/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Ovulation Induction/methods , Pregnancy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrimidines/administration & dosage , Treatment Outcome , Young Adult
14.
Int J Mol Sci ; 21(10)2020 05 19.
Article in English | MEDLINE | ID: mdl-32438564

ABSTRACT

The authors wish to make the following corrections to this paper [...].

15.
Platelets ; 31(2): 198-205, 2020.
Article in English | MEDLINE | ID: mdl-30885035

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of gene expression. Dysregulated expression of several miRNAs has been found in primary immune thrombocytopenia (ITP) suggesting that miRNAs are likely involved in the pathogenesis of ITP. We aimed to explore the differential expression of miRNAs in patients with ITP before and after starting treatment with thrombopoietin-receptor agonists (TPO-RAs) to clarify their roles in the pathophysiology of ITP, and as potential diagnostic and prognostic markers of this disorder.We performed a profiling study where 179 miRNAs were analyzed in eight ITP patients before and during treatment with TPO-RAs and in eight controls using miRNA PCR panel; 81 miRNAs were differentially expressed in ITP patients compared to controls, and 14 miRNAs showed significant changes during TPO-RA-treatment. Ten miRNAs were selected for validation that was performed in 23 patients and 22 controls using droplet digital PCR. Three miRNAs were found to be differentially expressed in ITP patients before TPO-RA-treatment compared to controls: miR-199a-5p was down-regulated (p = 0.0001), miR-33a-5p (p = 0.0002) and miR-195-5p (p = 0.035) were up-regulated. Treatment with TPO-RAs resulted in changes in six miRNAs including miR-199a-5p (p = 0.001), miR-33a-5p (p = 0.003), miR-382-5p (p = 0.004), miR-92b-3p (p = 0.005), miR-26a-5p (p = 0.008) and miR-221-3p (p = 0.023); while miR-195-5p remained unchanged and significantly higher than in controls, despite the increase in the platelet count, which may indicate its possible role in the pathophysiology of ITP. Regression analysis revealed that pre-treatment levels of miR-199a-5p and miR-221-3p could help to predict platelet response to TPO-RA-treatment. ROC curve analysis showed that the combination of miR-199a-5p and miR-33a-5p could distinguish patients with ITP from controls with AUC of 0.93.This study identifies a number of differentially expressed miRNAs in ITP patients before and after initiation of TPO-RAs with potential roles in the pathophysiology, as well as with a possible utility as diagnostic and prognostic biomarkers. These interesting findings deserve further exploration and validation in future studies.


Subject(s)
Circulating MicroRNA/blood , Receptors, Thrombopoietin/agonists , Thrombocytopenia/genetics , Adult , Biomarkers, Pharmacological , Blood Platelets/metabolism , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Cohort Studies , Computational Biology , Down-Regulation , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Platelet Count , Prognosis , ROC Curve , Regression Analysis , Thrombocytopenia/drug therapy , Thrombocytopenia/metabolism , Thrombocytopenia/physiopathology , Up-Regulation
16.
Neonatology ; 117(1): 15-23, 2020.
Article in English | MEDLINE | ID: mdl-31786577

ABSTRACT

BACKGROUND: The mechanisms underlying neonatal platelets hyporesponsiveness are not fully understood. While previous studies have demonstrated developmental impairment of agonist-induced platelet activation, differences in inhibitory signaling pathways have been scarcely investigated. OBJECTIVE: To compare neonatal and adult platelets with regard to inhibition of platelet reactivity by prostaglandin E1 (PGE1). METHODS: Platelet-rich plasma from umbilical cord (CB) or adult blood was incubated with PGE1 (0-1 µM). We assessed aggregation in response to adenosine diphosphate (ADP), collagen, and thrombin receptor activating peptide as well as cyclic adenosine 3'5'-monophosphate (cAMP) levels (ELISA). Gαs, Gαi2, and total- and phospho-protein kinase A (PKA) were evaluated in adult and CB ultrapure and washed platelets, respectively, by immunoblotting. RESULTS: Neonatal (vs. adult) platelets display hypersensitivity to inhibition by PGE1 of platelet aggregation induced by ADP and collagen (PGE1 IC50: 14 and 117 nM for ADP and collagen, respectively, vs. 149 and 491 nM in adults). They also show increased basal and PGE1-induced cAMP levels. Mechanistically, PGE1 acts by binding to the prostanoid receptor IP (prostacyclin receptor), which couples to the Gαs protein-adenylate cyclase axis and increases intracellular levels of cAMP. cAMP activates PKA, which phosphorylates different target inhibitor proteins. Neonatal platelets showed higher basal and PGE1-induced cAMP levels, higher Gαs protein expression, and a trend to increased PKA-dependent protein phosphorylation compared to adult platelets. CONCLUSION: Neonatal platelets have a functionally increased PGE1-cAMP-PKA axis. This finding supports a downregulation of inhibitory when going from neonate to adult contributing to neonatal platelet hyporesponsiveness.


Subject(s)
Age Factors , Alprostadil/pharmacology , Platelet Aggregation/drug effects , Adenosine Diphosphate/physiology , Adenylyl Cyclases/blood , Adult , Blood Platelets/drug effects , Blood Platelets/enzymology , Cyclic AMP/blood , Cyclic AMP-Dependent Protein Kinases/physiology , Humans , Infant, Newborn
17.
Thromb Res ; 183: 80-85, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31671376

ABSTRACT

INTRODUCTION: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease in which patients are at increased risk of thrombosis. The mechanisms underlying the associated thrombosis risk are still poorly understood, although it is known that Eculizumab, the drug of choice for symptomatic patients, prevents thrombotic events. Exosomes are extracellular vesicles that can carry and disseminate genetic material, tumor biomarkers and inflammatory mediators. To date, the metabolite cargo of plasma exosomes from PNH patients has not yet been explored. In this pilot trial, we compared the metabolome of plasma exosomes from PNH patients with that of healthy subjects in order to provide further insights into this rare disease. RESULTS: We used a non-targeted metabolomics approach with UPLC-ESI-QTOF-MS/MS and GC-MS platforms. Multivariate analyses revealed the differential occurrence (p < .001) of 78 metabolites in plasma exosomes from PNH patients vs healthy control subjects. Remarkably, prostaglandin F2-alpha (6.1-fold), stearoyl arginine (5.3-fold) and 26-hydroxycholesterol-3-sulfate (11.2-fold) were higher in PNH patients vs healthy controls (p < .001). CONCLUSIONS: This is the first description on the differential metabolite cargo occurring in plasma exosomes from PNH patients. Our results could contribute to the search for possible prognostic biomarkers of thrombotic risk in patients with PNH. Further research in a larger cohort to validate these results is warranted.


Subject(s)
Exosomes/physiology , Hemoglobinuria, Paroxysmal/genetics , Metabolome/physiology , Thrombosis/etiology , Adolescent , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Pilot Projects
18.
Int J Mol Sci ; 20(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315202

ABSTRACT

Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this high production, the number of circulating platelets is stable and, under resting conditions, they maintain their typical discoid shape thanks to cytoskeleton proteins. The activation of platelets is associated with dynamic and rapid changes in the cytoskeleton. Two cytoskeletal polymer systems exist in megakaryocytes and platelets: actin filaments and microtubules, based on actin, and α- and ß-tubulin heterodimers, respectively. Herein, we will focus on platelet-specific tubulins and their alterations and role of the microtubules skeleton in platelet formation (thrombopoiesis). During this process, microtubules mediate elongation of the megakaryocyte extensions (proplatelet) and granule trafficking from megakaryocytes to nascent platelets. In platelets, microtubules form a subcortical ring, the so-called marginal band, which confers the typical platelet discoid shape and is also responsible for changes in platelet morphology upon activation. Molecular alterations in the gene encoding ß1 tubulin and microtubules post-translational modifications may result in quantitative or qualitative changes in tubulin, leading to altered cytoskeleton reorganization that may induce changes in the platelet number (thrombocytopenia), morphology or function. Consequently, ß1-tubulin modifications may participate in pathological and physiological processes, such as development.


Subject(s)
Blood Platelets/metabolism , Tubulin/metabolism , Animals , Genetic Variation , Humans , Protein Processing, Post-Translational , Tubulin/chemistry , Tubulin/genetics
19.
Sci Rep ; 9(1): 3611, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837665

ABSTRACT

Paroxysmal Nocturnal Hemoglobinuria (PNH) is a clonal disease of blood cells caused by the lack of glycosyl phosphatidyl inositol anchored proteins bound to the cell membrane. In consequence, erythrocytes lead to intravascular hemolysis upon complement activation, which promotes high risk of thrombosis, intravascular hemolytic anemia, and bone marrow failure in patients. The mechanisms of thrombosis in PNH are still poorly understood. Treatment with eculizumab reduces intravascular hemolysis and thrombotic risk, but not in all cases. Exosomes are extracellular vesicles released by cells and whose secretion is closely related to the inflammatory status. They participate in cell communication by activating signaling pathways and transferring genetic material and proteins to host cells. In consequence, exosomes may serve as surrogate biomarkers for the prognosis and/or diagnosis of a disease. Isolation of exosomes was carried out from healthy controls and from three groups of PNH patients, i.e. i) with no eculizumab treatment; ii) under treatment with eculizumab that have not suffered thrombosis; and iii) under treatment with eculizumab but that have suffered thrombosis. The miRNAome and proteome was analyzed using plasma focus miRNAs PCR panel and LC-MS analysis respectively. We found differential expression of miRNAs miR-148b-3p, miR-423-3p, miR29b-3p, miR15b-5p, let-7e-5p, miR126-3p, miR-125b-5p and miR-376c-3p as well as hemoglobin, haptoglobin, protein S and C4-binding protein in healthy controls vs PNH patients. Our results warrant further research and provide new information on the content of exosomes that could play a role in the hypercoagulable state in this disease.


Subject(s)
Biomarkers/blood , Exosomes/genetics , Exosomes/metabolism , Hemoglobinuria, Paroxysmal/blood , Hemoglobinuria, Paroxysmal/diagnosis , MicroRNAs/blood , Proteome/analysis , Adolescent , Aged , Case-Control Studies , Female , Hemoglobinuria, Paroxysmal/genetics , Humans , Male , MicroRNAs/genetics , Middle Aged
20.
Platelets ; 30(7): 803-808, 2019.
Article in English | MEDLINE | ID: mdl-29787683

ABSTRACT

Although a growing number of studies suggest that microRNAs (miRNAs) play a relevant role in platelet biology, their implications in bleeding diatheses are starting to be investigated. Indeed, several studies have shown that alterations in the intracellular levels of highly expressed platelet miRNAs provoke a thrombotic phenotype. On the other hand, primary immune thrombocytopenia (ITP), which is considered the hallmark of acquired bleeding disorders, has been recently associated with altered levels of miRNAs in peripheral blood mononuclear cells, plasma, and platelets. In this review, we will focus on miRNAs that may affect the hemostatic and thrombotic functions of platelets, and we will discuss the different studies that have attempted to associate miRNAs with regulatory mechanisms of ITP.


Subject(s)
Blood Platelets/immunology , Hemorrhage/genetics , Hemostasis/genetics , MicroRNAs/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...