Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cent Nerv Syst Dis ; 9: 1179573517703342, 2017.
Article in English | MEDLINE | ID: mdl-28579869

ABSTRACT

Viruses are a common cause of central nervous system (CNS) infections with many host, agent, and environmental factors influencing the expression of viral diseases. Viruses can be responsible for CNS disease through a variety of mechanisms including direct infection and replication within the CNS resulting in encephalitis, infection limited to the meninges, or immune-related processes such as acute disseminated encephalomyelitis. Common pathogens including herpes simplex virus, varicella zoster, and enterovirus are responsible for the greatest number of cases in immunocompetent hosts. Other herpes viruses (eg, cytomegalovirus, John Cunningham virus) are more common in immunocompromised hosts. Arboviruses such as Japanese encephalitis virus and Zika virus are important pathogens globally, but the prevalence varies significantly by geographic region and often season. Early diagnosis from radiographic evidence and molecular (eg, rapid) diagnostics is important for targeted therapy. Antivirals may be used effectively against some pathogens, although several viruses have no effective treatment. This article provides a review of epidemiology, diagnostics, and management of common viral pathogens in CNS disease.

2.
Int J Antimicrob Agents ; 46(3): 290-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26145201

ABSTRACT

Drug-resistant Neisseria gonorrhoeae has become a global health concern that requires immediate attention. Due to increasing resistance to cephalosporins, pursuing novel alternatives for treating N. gonorrhoeae infections is paramount. Whilst new drug development is often cumbersome, reviving antiquated antibiotic agents for treatment of modern infections has become prevalent in clinical practice. Fosfomycin exhibits bactericidal activity through a unique mechanism of action, and a variety of organisms including N. gonorrhoeae are susceptible. In vitro studies have demonstrated that fosfomycin can retain activity against ceftriaxone-resistant N. gonorrhoeae; however, it remains unclear whether there is synergy between fosfomycin and other antibiotics. Clinical investigations evaluating fosfomycin for the treatment of N. gonorrhoeae infections are confounded by methodological limitations, none the less they do provide some perspective on its potential role in therapy. Future studies are needed to establish a safe, convenient and effective fosfomycin regimen for treating N. gonorrhoeae infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/microbiology , Neisseria gonorrhoeae/drug effects , Humans , Microbial Sensitivity Tests , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL