Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 107(1): 161-168, 2019 01.
Article in English | MEDLINE | ID: mdl-29575555

ABSTRACT

Direct pulp capping is an important procedure for preserving pulp viability. The pulp capping agent must possess several properties, including usability, biocompatibility, and the ability to induce reparative dentin formation. In this study, a novel bioactive glass-based cement was examined to determine whether the cement has the necessary properties to act as a direct pulp capping agent. Physicochemical properties of the bioactive glass-based cement and in vitro effects of the cement on odontoblast-like cells, as well as in vivo effects on the exposed dental pulp, were analyzed. The cement immersed in water stabilized at pH10, and hydroxyapatite-like precipitation was induced on the surface of the cement in simulate body fluid. There were no cytotoxic effects on the viability, alkaline phosphatase activity, or calcium deposition ability of odontoblast-like cells. In the in vivo rat study of an exposed dental pulp model, the cement induced a sufficient level of reparative dentin formation by odontoblast-like cells expressing odontoblastic markers at the exposed area of the dental pulp. These results suggest that the newly developed bioactive glass-based cement provides favorable biocompatibility with the dental pulp and may be useful as a direct pulp capping agent. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 161-168, 2019.


Subject(s)
Dental Cements , Glass/chemistry , Materials Testing , Odontoblasts/metabolism , Pulp Capping and Pulpectomy Agents , Animals , Cell Line , Dental Cements/chemistry , Dental Cements/pharmacology , Dentin/metabolism , Odontoblasts/cytology , Pulp Capping and Pulpectomy Agents/chemistry , Pulp Capping and Pulpectomy Agents/pharmacology , Rats
2.
J Biomater Sci Polym Ed ; 30(1): 49-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30470163

ABSTRACT

Gelatin hydrogel sponges incorporating bioactive glasses (Gel-BG) were fabricated. We evaluated the characteristics of Gel-BG as scaffolds from the perspective of their mechanical properties and the formation of hydroxyapatite by the incorporation of bioactive glasses (BG). In addition, the Gel-BG degradation and the profile of fibroblast growth factor-2 (FGF-2) release from the Gel-BG were examined. Every Gel-BG showed an interconnected pore structure with the pore size range of 180-200 µm. The compression modulus of sponges incorporating BG increased. The time profiles of degradation for the 72-h crosslinked gelatin hydrogel sponges incorporating 10 wt% BG (Gel-BG(10)) and 50 wt% BG (Gel-BG(50)) were analogous to that of the 24-h crosslinked gelatin hydrogel sponge without BG (Gel-BG(0)). In measuring the release of FGF-2 from Gel-BG, the Gel-BG(10) and Gel-BG(50) showed almost analogous 100% cumulative release within 28 days in vivo. Additionally, a bioactivity evaluation showed that the presence of gelatin does not affect the in vitro bioactivity of Gel-BG. These sponges showed mechanical and chemical functionality as scaffolds, featuring both the controlled release of FGF-2 and the induction of hydroxyapatite crystallization.


Subject(s)
Biocompatible Materials/chemistry , Fibroblast Growth Factor 2/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Delayed-Action Preparations/chemistry , Drug Liberation , Fibroblast Growth Factor 2/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL